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INTRODUCTION
These days, biochemists and food industry workers 

are facing an important task: they have to provide 
population with high-quality protein. Introducing dairy 
products into bakery formulae can solve the problem, 
since milk proteins are biologically valuable according 
to the content and ratio of essential amino acids. The 
amino acid composition of whey proteins is closest to 
that of human muscle tissue. Whey proteins are superior 
to all other animal or plant proteins in terms of essential 
amino and branched-chain acids, i.e. valine, leucine, and 
isoleucine [1–3].

However, there is the problem of people with lactose 
intolerance. According to the Institute of Immunology 
(Ministry of Health of the Russian Federation), 65% of 
allergic patients demonstrate intolerance to some kind 
of food, e.g. dairy products. This problem is especially 

common among children [4–7]. Therefore, dairy 
products as additives require a thorough research [8].

Although people of any age can digest unaltered 
milk proteins, cow’s milk remains one of the strongest 
and most common allergen [6–8]. It contains about 
20 proteins with different degrees of antigenicity, 
including those with the highest clinical relevance, 
such as β-lactoglobulin, α-lactalbumin, bovine serum 
albumin (BSA), γ-globulin, and α- and β-caseins [9–11].  
β-lactoglobulin is the predominant whey protein in 
cow’s milk: 50% of whey protein and about 10% of total 
protein. It is considered one of the main milk allergens, 
while α-lactalbumin and BSA have a lower immune 
reactivity [12]. Sensitisation to β-lactoglobulin is caused 
by numerous continuous epitopes located along the 
entire length of its molecule [2, 12, 13].

A β-lactoglobulin molecule consists of 162 amino acid 
residues and has a molecular weight of about 18300 Da. 
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At pH 6.8–7, β-lactoglobulin can be found in milk as a 
dimer [14].

β-Lactoglobulin is relatively resistant to acid 
hydrolysis and intestinal proteases. As a result, when 
consumed with food, part of the protein remains intact 
in the gastrointestinal tract and can penetrate through 
the intestinal wall. Heat treatment reduces the IgE-
binding ability in proportion to the degree of heating. 
However, new antigenic sites may form in denatured 
proteins. These sites were unavailable for binding in the 
native molecule or appeared during a chemical reaction 
with other food molecules. IgE obtained from patients 
with an allergy to β-lactoglobulin was found specific to 
both native and denatured proteins [2, 10].

Like any proteins, milk proteins are exposed to 
temperature, pressure, and enzymes. The following 
scheme is generally accepted for the thermal denaturation 
of β-lactoglobulin: deployment of protein molecules 
– dissociation of dimer – aggregation of denatured 
protein. Dimeric β-lactoglobulin reversibly dissociates 
into monomers at 30–55°C. At 80°C, the molecule is 
almost completely unfolded [11, 13]. The reversibility 
of β-lactoglobulin denaturation depends on the heating 
degree and time. After a low temperature heating, a small 
part of the denatured (unfolded) β-lactoglobulin molecules 
can restore their native structure. However, an hour at  
95–97 °C leads to an active aggregation of β-lactoglobulin 
molecules. As a result, protein denatures irreversibly. 
After denaturation at ≥ 70°C, the β-lactoglobulin 
structure can partially stabilise as the chains re-clot and 
disulfide bridges are formed. At 130–140°C, the disulfide 
bonds break, and the protein polypeptide chains deploy 
completely and irreversibly [2, 15–17]. Denaturation and 
hydrolysis of β-lactoglobulin is possible when exposed 
to microwave radiation [18, 19]. Denatured or hydrolysed 
milk proteins used in dairy mixes are known to be less 
allergenic [20, 21].

During baking, the temperature of the crust can 
reach 180–230°C, while the core crumb warms up to no 
more than 95°C for several minutes [22]. In this regard, 
the effect of the baking process on the β-lactoglobulin 
content in bread with dairy products remains 
understudied.

In fermented milk products, most milk proteins 
are destroyed by various microorganisms, including 
LAB. Prebiotic cultures of LAB are known to reduce 
the allergenicity of cow’s milk due to the partial 
denaturation of allergenic proteins [24, 25].

Microorganisms play an important part in baking. 
For instance, fermentation process takes place in 
sourdough and dough. Various types of LAB are widely 
used in sourdough [22, 23]. Hence, it is necessary 
to study the effect of LAB sourdough and dough 
fermentation on the destruction of cow milk allergen 
protein. The research can result in a method of reducing 
the allergenicity of dairy products and creating new, 
safer bakery products.

Thus, the research objective was to study the effect 
of LAB and yeast on the destruction of β-lactoglobulin 
during baking.

STUDY OBJECTS AND METHODS
Effect of LAB on the β-lactoglobulin content 

and acidity of the sourdough. The research featured 
sourdough of 8 LAB strains: Lactobacillus plantarum 
E36, Lactobacillus plantarum E4, Lactobacillus 
plantarum E1, Lactobacillus  parabuchneri E7, 
Lactobacillus  paracasei/casei E31, Lactobacillus  
paracasei E3, Lactobacillus acidophilus 22n2, and 
Lactobacillus helveticus ATCC 8018T. As for the 
yeast strains, 8 types were employed: Saccharomyces 
cerevisiae – strains L-1, 90, 512, 17, XII, and 
Krasnodarsky; Candida milleri Chernorechensky; and 
Kluyveromyces marxianus Pushkinsky. The samples 
were obtained from the Collection of the St. Petersburg 
Branch of the State Research Institute of Baking 
Industry (St. Petersburg, Russia) [26].

Preparing the sourdough: The nutritional mixture 
consisted of rice flour and SMP (30%, 60%, and 90% 
per 100 kg of mixture). The moisture content was 75%. 
The LAB culture fluid had a cell content of 108 CFU/ml  
cultivated in SMP for 48 h. During the first phase, it 
was added to a mixture of raw materials and water, 
stirred, and placed in a thermostat for 24 h at 30°C. The 
fermented sourdough was then added to the nutrient 
mixture in the ratio of 1:3 and allowed to ferment for 24 h 
at 30°C. Table 1 shows the formulae for sourdough of the 
propagating and production cycles. A nutritional mixture 
devoid of any LAB served as a control sample.

The quality of the sourdoughs was assessed 
according to their acidity. The acidity was determined 
by the common method used in baking industry. 
The sourdough suspension was titrated in water at  
H = 0.1 with NaOH solution and phenolphthalein [27].

Table 1 Formulae for sourdough with SMP and pure LAB 
cultures in the propagating and production cycles 

Material Raw materials in the sourdough with the 
content of SMP, % to dry solids 

30 60 90 30 60 90
Phase I of the 
propagating cycle

Production cycle

LAB culture 
fluid, ml

10.0 10.0 10.0 – – –

Sourdough 
(Phase 
I of the 
propagating 
cycle), g

– – – 50.0 50.0 50.0

Rice flour, g 35.0 20.0 5.0 29.0 16.6 4.1
SMP, g 15.0 30.0 45.0 12.4 24.9 37.3
Water, g 121.0 121.0 121.0 108.6 108.6 108.6
Total: 181.0 181.0 181.0 200.0 200.0 200.0
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Effect of the yeast on the content of 
β-lactoglobulin in the sourdough. Preparing the 
sourdough: Yeast strains grown on malt wort slant agar 
(8% DS) were used to screen the allergen reducing 
activity of the yeast. 10 mL of yeast culture were 
introduced into an aqueous suspension with 10 CFU/ml  
cell content in the nutritional mixture (Table 2). The 
mixture consisted of rice flour, SMP (30%, 60%, 
and 90% per 100 kg of the mixture), and water. The 
moisture content of the mixture was 75%. To prevent 
the development of extraneous microflora, L.helveticus 
ATCC 8018T was added to the nutrient mixtures. The 
strain had been selected during the first stage of the 
experiment. It demonstrated the highest allergen-
reducing activity.

The sourdoughs were fermented for 24 h at 30°C and 
then examined for acidity, temperature, and moisture 
content.

The effect of sourdough and dough fermentation 
and baking on the content of β-lactoglobulin. 
Laboratory baking was used to study of the effect of the 
technological process (fermentation and baking) on the 
content of β-lactoglobulin in dough and gluten-free bread.

Preparing the sourdough: The nutritional mixture 
consisted of rice flour and SMP (0%, 30%, 60%, 

90%, and 100%). The moisture content was 75%.  
LAB of L.helveticus ATCC 8018T strain and yeast of 
S.cerevisiae 17 and C.milleri Pushkinsky were added to 
the mixture in the quantities indicated in Table 3.

Preparing the dough: The dough for the control 
sample was kneaded from corn starch, extrusion starch, 
soy protein isolate, rice flour, and SMP in the amount of 
3%, 6%, 9%, and 10% to the weight of the mixture. The 
mixture contained sugar, salt, pressed baking yeast, and 
vegetable oil. The moisture content was 53.5%.

The dough for the samples was prepared from the 
sourdough obtained at phase II of the propagating cycle 
(10% of the mixture in the intermediate product), corn 
starch, extrusion starch, rice flour, sugar, salt, pressed 
baking yeast, vegetable oil, and water. Table 4 shows the 
formulae of the dough.

The dough was poured into 250-gram moulds and 
allowed to rise at 35–40°C at an average humidity of  

Table 2 Sourdough formulae with SMP and pure cultures  
of yeast and LAB

Material Raw materials in the sourdough with  
the content of SMP, % to dry solids

30 60 90
Yeast suspension, ml 10.0 10.0 10.0
Culture fluid of 
L.helveticus  
ATCC 8018T, ml

10.0 10.0 10.0

Rice flour, g 35.0 20.0 5.0
SMP, g 15.0 30.0 45.0
Water, g 111.0 111.0 111.0
Total: 181.0 181.0 181.0

Table 3 Sourdough formulae with SMP in propagating  
and production cycles

Material Raw materials in the sourdough with the 
content of SMP, % to dry solids

30 60 90 30 60 90
Phase I of the 
propagating cycle

Production cycle

Culture fluid 
of L.helveticus 
ATCC 8018T, ml

10.0 10.0 10.0 – – –

Yeast suspension, 
ml: S.cerevisiae 17

5.0 5.0 5.0

C.milleri 
Pushknsky

5.0 5.0 5.0

Sourdough,g – – – 50.0 50.0 50.0
Rice flour, g 35.0 20.0 5.0 29.0 16.6 4.1
SMP, g 15.0 30.0 45.0 12.4 24.9 37.3
Water, g 111.0 111.0 111.0 98.6 98.6 98.6
Total: 181.0 181.0 181.0 200.0 200.0 200.0

Table 4 Dough formulae 

Material Consumption of raw materials per 100 kg of the mixture with the SMP content,  
% to the weight of the mixture in the dough

Control sample Experimental sample
3 6 9 10 3 6 9 10

Corn starch, g 64.2 61.2 58.2 57.2 64.2 61.2 58.2 57.2
Extrusion starch, g 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
Rice flour, g 20.0 20.0 20.0 20.0 13.0 16.0 19.0 20.0
SMP, g 3.0 6.0 9.0 10.0 – – – –
Sourdough, g – 36.0
Pressed baking yeast, g 2.5
Vegetable oil, g 3.8
Salt, g 0.8
Sugar, g 2.0
Water, g 110.6 84.7
Total: 217.0
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80 ± 2%. After that, the samples were baked in an oven 
at 210°C for 18 min with a 5-second steam supply.

Preparing samples for the immunoassay and gel 
electrophoresis. Preceding the analysis, the samples 
underwent the following procedures. 9 mL of phosphate-
saline buffer (PBS, pH = 7.4) was added to 1g of the 
test sample (sourdough, dough, or bread). The buffer 
contained sodium azide to protect the samples from 
microorganisms. After that, a 12-hour extraction 
was performed using a shaker at 20 ± 1°C. After the 
extraction, the samples were centrifuged at 40°C and 
14000 rpm in an Eppendorf Centrifuge 5417R to remove 
microorganisms and undissolved components. After the 
centrifugation, the samples were diluted 10 thousand 
times in a phosphate-buffered saline (20 mM phosphate, 
150 mM NaCl, pH 7.2). The dilution was adapted to the 
concentration range defined by the test system.

The method of enzyme-linked immunosorbent assay 
(ELISA method) was used to measure the content of 
β-lactoglobulin in the sourdoughs at the onset and at the 
end of fermentation. The process involved antibody No. 
362-beta-lactoglobulin – a set of reagents provided by 
OOO Hema (St. Petersburg, Russia).

Electrophoresis in a sodium dodecyl sulphate 
polyacrylamide denaturing gel was employed to confirm 
the presence of β-lactoglobulin in the sourdoughs at the 
onset and at the end of fermentation, as well as in the bread. 

A bicinchoninic acid reagent kit (BCA, Pierce) was 
used to define the total protein in the sourdoughs at the 
onset and at the end of fermentation and in the produced 
bread. The disc electrophoresis was conducted in non-
reducing conditions according to Laemmli method. The 
samples were diluted to a protein concentration of 1 mg/
ml before they were applied to a 13% separating gel.

Statistics. The statistical analysis was performed 
using Excel software. The method of two-way ANOVA 
was used to compare the effects of the SMP amount 
and the type of strain on the content of β-lactoglobulin 
in the sourdoughs, dough, and bread. The research also 
assessed the correlation and covariance between the 
β-lactoglobulin content and the sourdough acidity.

The data show the confidence intervals, which prove 
the accuracy of the methods for determining protein 
content and acidity.

RESULTS AND DISCUSSION
The experiment measured the acidity in the 

sourdoughs based on various strains with different 
content of SMP. Acidity reflects the development of 
microorganisms in the environment. A high level of 
acidity improves the absorption of nutrients from the 
environment. High acidity values accelerate proteolysis, 
which is important for the destruction of protein and 
its constituents, including the allergenic ones. During 
phases I and II of fermentation, L.acidophilus 22n2 and 
L.helveticus ATCC 8018T showed the highest titrated 
acidity indicators at the end of phase II (Table 5). These 

strains demonstrated the maximum titratable acidity 
with SMP = 60%.

All the LAB strains had different effects on 
β-lactoglobulin (Fig. 1). The degree of β-lactoglobulin 
degradation decreased with the increase in the SMP 
concentration in the nutritional mixture, while different 
strains reacted differently to the increase in the SMP 
concentration. At SMP = 30%, the sourdough sample 
with L.plantarum E36 showed the biggest drop in 
β-lactoglobulin content in the fermentation process – 
by 53%. However, at SMP = 60% and 90%, it was the 
L.helveticus ATCC8018T sample that showed the biggest 
drop in the content of the allergen – by 48 and 40%, 
respectively. In the sourdoughs, the SMP amount might 
have a different effect on the vital activity of lactic acid 
bacteria, since they normally live in silage and flour, 
except L.acidophilus 22n2 and L.helveticus ATCC8018T.

The two-way ANOVA method gave the following 
results. The SMP amount had a significant effect on 
the β-lactoglobulin content in the sourdough after 
fermentation: alpha = 0.05, P < 0.001, F = 27.78,  
Fcritical = 3.63. However, the type of LAB strain 
factor produced no effect: alpha = 0.05, P = 0.25,  
F = 1.46, Fcritical = 2.59. A strong positive correlation 
and covariance was revealed between the final 
β-lactoglobulin content and the final acidity level of 
the sourdough for L.plantarum E4 and L.acidophilus 
22n2. The correlation coefficients were 0.99 and 0.91, 

Table 5 Effect of various LAB strains on the sourdough 
acidity 

LAB strain in the 
sourdough at different  
SMP amounts 

Titrated acidity of the sourdough, degree
Phase I Phase II 

onset final onset final
SMP = 30% 

L.paracasei E3
L.paracasei E31
L.plantarum E36
L.plantarum E4
L.parabuchneri E7
L.acidophilus 22n2
L.helveticus ATCC 8018T
L.plantarum E1

3.0 ± 0.3
3.0 ± 0.3
2.5 ± 0.3
3.0 ± 0.3
3.0 ± 0.3
3.0 ± 0.3
3.0 ± 0.3
2.7 ± 0.3

12.9 ± 1.3
12.3 ± 1.2
7.7 ± 0.8
7.5 ± 0.8
6.8 ± 0.7
15.8 ± 1.6
12.8 ± 1.3
9.5 ± 1.0

4.5 ± 0.5
4.2 ± 0.4
2.9 ± 0.3
2.9 ± 0.3
2.8 ± 0.3
3.5 ± 0.4
3.3 ± 0.3
5.0 ± 0.5

13.5 ± 1.4
15.3 ± 1.5
9.8 ± 1.0
8.6 ± 0.9
11.0 ± 1.1
18.5 ± 1.9
16.5 ± 1.7
12.2 ± 1.2

SMP = 60% 
L.paracasei E3
L.paracasei E31
L.plantarum E36
L.plantarum E4
L.parabuchneri E7
L.acidophilus 22n2
L.helveticus ATCC 8018T
L.plantarum E1

3.5 ± 0.4
3.5 ± 0.3
3.0 ± 0.3
3.4 ± 0.3
3.8 ± 0.4
4.5 ± 0.5
4.5 ± 0.5
4.1 ± 0.4

13.7 ± 1.4
14.2 ± 1.4
9.5 ± 1.0
8.2 ± 0.8
8.5 ± 0.9
21.0 ± 2.1
17.2 ± 1.7
10.5 ± 1.1

5.3 ± 0.5
6.5 ± 0.7
3.6 ± 0.4
5.0 ± 0.5
4.0 ± 0.4
6.0 ± 0.6
5.5 ± 0.6
4.5 ± 0.5

19.8 ± 2.0
20.4 ± 2.0
11.9 ± 1.2
11.2 ± 1.1
11.8 ± 1.3
28.0 ± 2.8
22.5 ± 2.3
10.2 ± 1.0

SMP = 90% 
L.paracasei E3
L.paracasei E31
L.plantarum E36
L.plantarum E4
L.parabuchneri E7
L.acidophilus 22n2
L.helveticus ATCC 8018T
L.plantarum E1

4.7 ± 0.5
4.2 ± 0.4
4.5 ± 0.5
4.5 ± 0.5
5.2 ± 0.5
5.7 ± 0.6
5.5 ± 0.6
5.0 ± 0.5

13.2 ± 1.3
12.5 ± 1.3
9.5 ± 1.0
11.0 ± 1.1
9.1 ± 0.9
23.9 ± 2.4
20.0 ± 2.0
10.5 ± 1.1

6.0 ± 0.6
5.6 ± 0.6
5.5 ± 0.6
5.3 ± 0.5
5.7 ± 0.6
7.0 ± 0.7
6.0 ± 0.6
5.8 ± 0.6

16.2 ± 1.6
19.6 ± 2.0
17.4 ± 1.7
16.3 ± 1.6
17.0 ± 1.7
27.5 ± 2.8
22.5 ± 2.3
15.3 ± 1.5
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respectively. The covariance coefficients were 3270 
and 2449, respectively. L.paracasei E31 demonstrated a 
weak inverse correlation (coefficient = 0.25). 

The screening of the allergen-reducing activity of 
various yeast strains (Fig. 2) showed that the strains 
produced a different effect. As for Saccharomyces 
cerevisiae, strain 17 demonstrated the highest allergen-
reducing activity: the β-lactoglobulin content fell by 
28–42%. As for the Candida milleri, it was Pushkinsky 
strain: the β-lactoglobulin content fell by 25–41%. 

The two-way ANOVA method gave the following 
results. The SMP amount had a significant effect on 
the β-lactoglobulin content in the sourdough after 
fermentation: alpha = 0.05, P < 0.001, F = 93.60,  
Fcritical = 3.56. However, the type of yeast strain factor 
produced no effect: alpha = 0.05, P = 0.37, F = 1.17, 
Fcritical = 2.46.

Lactic acid bacteria strain L.helveticus ATCC 8081T 
and two yeast strains, S.cerevisiae 17 and C. milleri 
Pushkinsky, were selected for further research, which 
featured the effect of fermentation and baking on the 
β-lactoglobulin content in sourdough, dough, and bread.

The enzyme immunoassay showed a decrease 
in β-lactoglobulin at the end of phases I and II by  
1.4–1.8 times, if compared with its content in the 
nutrient mixture immediately after mixing (Fig. 3). 
Thus, the allergen was destroyed by the LAB enzymes.

Figure 1 Content of β-lactoglobulin in the sourdoughs with various LAB strains after fermentation 

Figure 2 Content of β-lactoglobulin in the sourdoughs various yeast strains after fermentation 
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Figure 3 Content of β-lactoglobulin in the sourdough before 
and after fermentation at the end of phases I and II
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Figure 4 Total protein in the sourdough before fermentation 
and after phases I and II
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Despite the destruction of β-lactoglobulin, the total 
protein content in samples with SMP = 60% and 90% 
increased in the fermentation process, if compared with 
the initial amount (Fig. 4). The total protein content 
was determined using a bicinchoninic acid reagent 
kit. Presumably, there are two ways additional protein 
could appear during the experiment. First, it could 
increase during fermentation due to the accumulation 
of yeast biomass. Second, it could be released from 
any supramolecular or covalent complexes with other 
macromolecules – proteins or polysaccharides. To 
understand how the increase in the microbial biomass 
affected the increase in total protein, an experiment was 
conducted with sourdough based on rice flour, without 
SMP. In this case, the amount of total protein in the 
sourdough without SMP remained virtually unchanged 
during the fermentation. It was 3.8 mg/g before 
fermentation and 4.0 mg/g at the end of phase I. The 
increase in the total protein in the sourdoughs with SMP 
might have been caused by the release of the previously 
bound protein. It happened under the influence of yeast 
and LAB enzymes, not because their biomass increased.

The experiment revealed a decrease in 
β-lactoglobulin in the dough after fermentation, 
compared with its content immediately after kneading 
(Fig. 5). Due to the fact that the kneading involved 
pressed yeast, the decrease in β-lactoglobulin could 
be explained by the combined effect of fermenting 
microflora enzymes and industrial yeast.

As for the finished products, the content of 
β-lactoglobulin in the control and experimental bread 
samples did not exceed 1 µg/g. Hence, the temperature 
degradation of β-lactoglobulin proved highly efficient 
for bakery products.

The electrophoresis was conducted according 
to Laemmli’s method in sodium dodecyl sulphate 
polyacrylamide gel with non-reducing conditions. It also 
confirmed a decrease in the content of β-lactoglobulin 
(Fig. 6 and 7). Neither blotting of polyacrylamide gel 
proteins to nitrocellulose, nor detection of β-lactoglobulin 
by antibodies from the ELISA test system gave any 
results. Neither of the antibodies was able to identify the 
antigen after electrophoresis in such conditions. That 
proved that the content of β-lactoglobulin in the finished 
products was extremely low.

Thus, the research proved that thermal treatment has 
a greater impact on the destruction of β-lactoglobulin 
than enzymatic treatment. 

CONCLUSION
The research investigated the effect of various LAB 

and yeast strains on the β-lactoglobulin content in 
gluten-free sourdough with SMP. Increasing the amount 
of SMP had an inhibitory effect on the utilization of 
β-lactoglobulin by L.plantarum E36, L.plantarumE1, 
and L.helveticus ATCC8018T. The last demonstrated the 
highest allergen-reducing activity when SMP equalled 
60% and 90% of the solid weight: β-lactoglobulin 
decreased by 48% and 40%, respectively. The yeast 
strains Saccharomyces cerevisiae 17 and Candida milleri 
Pushkinsky showed the biggest decrease in the content of 
β-lactoglobulin: by 28–42% and 25–41%, respectively. 

Figure 5 Content of β-lactoglobulin in the dough before and 
after fermentation

Figure 6 Electrophoregramme samples: sourdough before 
fermentation: SMP = 30% (1), SMP = 60% (2), SMP = 90% (3); 
sourdough after fermentation: SMP = 30% (4),  
SMP = 60% (5), SMP = 90% (6), and the marker (M)

Figure 7 Electrophoregramme samples: control bread sample 
with SMP = 30% (1), SMP = 60% (2), SMP = 90% (3); 
experiment bread samples with SMP = 30% (4), SMP = 60% 
(5), SMP = 90% (6), and the marker (M)
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S.cerevisiae L-1, S.cerevisiae 512, S.cerevisiae 90, 
and S.cerevisiae XII demonstrated an increase in the 
content of β-lactoglobulin at SMP concentration of 
90%. This might have been connected with a release of 
β-lactoglobulin, previously bound to other proteins.

The content of β-lactoglobulin in the control 
and experimental samples of bread did not exceed 
1µg/g, which proved a high efficiency of temperature 
degradation of β-lactoglobulin in the baking process. 
Therefore, temperature processing (baking) had a 
greater impact on the destruction of β-lactoglobulin than 
enzymatic processing (fermentation).
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