ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Effects of lingonberry extract on the antioxidant capacity of meat paste

Introduction. Modern meat scientists are currently interested in combining meat raw materials with plant ingredients to enrich products with biologically active substances of natural origin, including antioxidants. In this regard, we studied the antioxidant capacity of a dry lingonberry marc extract introduced into meat paste and analyzed its effects on the product’s color and stability during storage. Study objects and methods. Our objects of study were a dry lingonberry marc extract originating in the Republic of Buryatia, forcemeat, and a ready-made paste in a casing. The extract was obtained by water-alcohol extraction using microwave irradiation. We investigated the physicochemical characteristics of the dry extract, including its contents of phenolic compounds, benzoic acid, and antioxidants. Results and discussion. During the experiment, we analyzed the extract’s effect on the paste’s total antioxidant capacity, coloring, and shelf life. The results showed that increasing the extract’s amount from 0.1% to 0.4% changed the color of the paste from gray-brown to purple-brown, respectively, due to anthocyanins. In further tests, we used a 0.2% concentration of lingonberry extract – the optimal amount that retained the usual brown color of the paste while increasing the content of antioxidant substances. Then, we analyzed the degree of fat oxidation in the paste samples made with and without sodium lactate during storage. According to the results, the lingonberry marc extract used without the acidity regulator and with it inhibited lipid oxidation by 12.7% and 20%, respectively, by neutralizing free radicals. Finally, we tested the presence of pathogenic microorganisms in the end products. We detected no E. coli bacteria in the samples and found an inhibited growth of mesophilic anaerobic and facultative anaerobic microorganisms due to the extract’s bactericidal effect established in Our earlier studies. Conclusion. Thus, our results indicated that the dry lingonberry marc extract introduced into meat paste increased the product’s total antioxidant capacity and improved its stability during storage.
Ключевые слова
Meat products , berry extract , lingonberry , paste , phenolic compounds , antioxidants , oxidation , peroxide value
  1. Antipova LV, Glotova IA. Osnovy ratsionalʹnogo ispolʹzovaniya vtorichnogo kollagensoderzhashchego syrʹya myasnoy promyshlennosti [Fundamentals for rational use of recycled collagen-containing raw materials in the meat industry]. Voronezh: Voronezh State Technological Academy; 1997. 246 p. (In Russ.).
  2. Lafarga T, Hayes M. Bioactive peptides from muscle meats and by-products: generation, functionality and application as functional ingredients. Meat Science. 2014;98(2):227–239. DOI:
  3. Henchion M, McCarthy M, O’Callaghan J. Transforming beef by-products into valuable ingredients: which spell/recipe to use? Frontiers in Nutrition. 2016;3. DOI:
  4. Uzakov YaM, Kaimbaeva LA. Using meat and offal of marals in production of meat products. Meat Industry. 2015;(8):40–43. (In Russ.).
  5. Gurinovich GV, Gargaeva AG, Kudryashov LS. Investigation of the emulsifying ability of meat systems containing plant components for the production of pates. All about meat. 2018;(6):54–56. (In Russ.).
  6. Bazhenova BA, Balzhinimaeva SK. Pâté forcemeat with a biologically active additive. Food Processing: Techniques and Technology. 2011;23(4):19–23. (In Russ.).
  7. Giro TM, Chirkova OI. Mediko-biologicheskaya otsenka myasorastitelʹnykh pashtetov dlya korrektsii zhelezodefitsitnykh sostoyaniy [Biomedical evaluation of meat and plant pastes for correcting iron deficiency]. Food Processing: Techniques and Technology. 2009;12(1):50–53. (In Russ.).
  8. Okuskhanova EK, Asenova BK, Rebezov MB, Omargalieva NK, Yesimbekov ZS. Aminoacid composition of pâté based on maral meat and protein enricher. Food Processing: Techniques and Technology. 2015;39(4):71–79. (In Russ.).
  9. Lyakh VA, Fedyanina LN, Smertina ES. Development and evaluation of consumer properties of hypoallergenic meat pastes. Food Processing: Techniques and Technology. 2016;40(1):32–38. (In Russ.).
  10. Lisitsyn AB, Semenova AA, Gundyreva MI. Issledovanie antiokislitelʹnykh svoystv sverkhkriticheskikh CO2-ehkstraktov [A study of the antioxidant properties of supercritical CO2 extracts]. Meat Industry. 2006;(3):30–35. (In Russ.).
  11. Yendonova GB, Antsupova TP, Bazhenova BA, Zabaluyeva YuYu, Gerasimov AV. Antioxidant activity of the extract of chickweed (Stellaria media). Chemistry of plant raw material. 2018;(4):141–147. (In Russ.). DOI:
  12. Zhirkova EV, Skorokhodova MV, Martirosyan VV, Sotchenko EF, Malkina VD, Shatalova TA. Chemical composition and antioxidant activity of corn hybrids grain of different pigmentation. Foods and raw materials. 2016;4(2):85–91. DOI:
  13. Golubtsova YuV. Physical and chemical indicators and merchandasing assessment of wild strawberry, gooseberry, cherry, raspberry, banana, wild rose and kiwi. Foods and raw materials. 2017;5(1):154–164. DOI:
  14. Gougoulias N. Evaluation of antioxidant activity and polyphenol content of leaves from some fruit species. Oxidation Communications. 2015;38(1):35–45.
  15. Zabalueva YuYu, Meleshkina NV, Bazhenova BA, Danilov MB. One of the ways of enrichment of meat products by natural antioxidants. All about meat. 2017;(2):12–15. (In Russ.).
  16. Shah MA, Bosco SJD, Mir SA. Plant extracts as natural antioxidants in meat and meat products. Meat Science. 2014;98(1):21–33. DOI:
  17. Turgut SS, Işıkçi F, Soyer A. Antioxidant activity of pomegranate peel extract on lipid and protein oxidation in beef meatballs during frozen storage. Meat Science. 2017;129:111–119. DOI:
  18. Bitueva EhB, Ajusheeva EE. Meat cutlets production method. Russia patent RU 2410981C1. 2011.
  19. Ivanova GV, Izosimova IV. Meat-vegetable paste. Russia patent RU 2385652C2. 2010.
  20. Oswell NJ, Thippareddi H, Pegg RB. Practical use of natural antioxidants in meat products in the U.S.: A review. Meat Science. 2018;145:469–479. DOI:
  21. Kebede M, Admassu S. Application of antioxidants in food processing industry: options to improve the extraction yields and market value of natural products. Advances in Food Technology and Nutritional Sciences. 2019;5(2):38–49. DOI:
  22. Sokolov SYa, Zamotaev IP. Spravochnik po lekarstvennym rasteniyam (Fitoterapiya) [A handbook of medicinal plants (Phytotherapy)]. Moscow: Meditsina; 1988. 464 p. (In Russ.).
  23. Zambulaeva ND, Zhamsaranova SD. The antioxidant activity of extracts from bagasse of cowberry and cranberry. Problems of Biological, Medical and Pharmaceutical Chemistry. 2015;(11):54–55. (In Russ.).
  24. Yashin AYa. Inzhektsionno-protochnaya sistema s amperometricheskim detektorom dlya selektivnogo opredeleniya antioksidantov v pishchevykh produktakh i napitkakh [The injection-flow system with an amperometric detector for the selective determination of antioxidants in foods and beverages]. Russian Journal of General Chemistry. 2008;52(2):130–135. (In Russ.).
  25. Zambulaeva ND, Zhamsaranova SD. Investigation of the antioxidant and antimicrobial properties of juice processing by-products for use as ingredients for the enrichment of food products. Proceedings of Universities. Applied Chemistry and Biotechnology. 2018;8(1)(24):51–58. (In Russ.). DOI:
  26. Yashin YaI, Ryzhnev VYu, Yashin AYa, Chernousova NI. Prirodnye antioksidanty. Soderzhanie v pishchevykh produktakh i vliyanie ikh na zdorovʹe i starenie cheloveka [Natural antioxidants. Their content in food products and effect on human health and aging]. Moscow: TransLit; 2009. 212 p. (In Russ.).
  27. Polina SA, Efremov AA. Determination composition of anthocyanins in bilberry, cowberry and cranberry with HPLC. Chemistry of plant raw material. 2014;(2):103–110. (In Russ.).
Как цитировать?
Effects of lingonberry extract on the antioxidant capacity of meat paste. Foods and Raw Materials, 2020, vol. 8, no. 2, pp. 250-258
Кемеровский государственный университет
2308-4057 (Print) /
2310-9599 (Online)
О журнале