ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Miscanthus plants processing in fuel, energy, chemical and microbiological industries

The increasing shortage of fossil hydrocarbon fuel dictates the need to search for and develop alternative energy sources, including plant biomass. This paper is devoted to the study of the Miscanthus plants biomass potential and the analysis of technologies of its processing into products targeted at bioenergy, chemistry, and microbiology. Miscanthus is a promising renewable raw material to replace wood raw materials for the production of chemical, fuel, energy, and microbiological industries. Miscanthus is characterised by highly productive (up to 40 tons per one hectare of dry matter) C4-photosynthesis. Dry Miscanthus contains 47.1–49.7% carbon, 5.38–5.92% hydrogen, and 41.4–44.6% oxygen. The mineral composition includes K, Cl, N and S, which influence the processes occurring during biomass combustion. The total amount of extractives per dry substance lies in the range of 0.3–2.2 % for different extraction reagents. Miscanthus has optimal properties as an energy source. Miscanthus × giganteus pellets showed the energy value of about 29 kJ/g. For the bioconversion of plants into bioethanol, it is advisable to carry out simultaneous saccharification and fermentation, thus reducing the duration of process steps and energy costs. Miscanthus cellulose is of high quality and can be used for the synthesis of new products. Further research will focus on the selection of rational parameters for processing miscanthus biomass into products with improved physical and chemical characteristics: bioethanol, pellets, industrial cellulose, bacterial cellulose, carbohydrate substrate.
Ключевые слова
Miscanthus , bioethanol , cellulose , raw materials , processing
  1. Prosekov AY, Ivanova SA. Food security: The challenge of the present. Geoforum. 2018;91:73–77. DOI:
  2. Gushina VA, Volodkin AA, Ostroborodova NI, Agapkin ND, Letuchiy AV. Peculiarities of growth and development of introduction of miscanthus gi-ganteus in the conditions of forest-step zone in Middle Volga. The Agrarian Scientific Journal. 2018;(1):10–13. (In Russ.).
  3. Volobaev VP, Larionov AV, Kalyuzhnaya EE, Serdyukova ES, Yakovleva S, Druzhinin VG, et al. Associations of polymorphisms in the cytokine genes IL1β (rs16944), IL6 (rs1800795), IL12b (rs3212227) and growth factor VEGFA (rs2010963) with anthracosilicosis in coal miners in Russia and related genotoxic effects. Mutagenesis. 2018;33(2):129–135. DOI:
  4. Gismatulina YuA. Comparative chemical composition of five miscanthus var. ‘Soranovskiy’ harvests: whole plant, leaf, and stem. Advances in current natural sciences. 2016;(4):23–26. (In Russ.).
  5. Sarkar A, Asaeda T, Wang QY, Rashid MH. Arbuscular mycorrhizal influences on growth, nutrient uptake, and use efficiency of Miscanthus sacchariflorus growing on nutrient-deficient river bank soil. Flora. 2015;212:46–54. DOI:
  6. Tamura K, Sanada Y, Shoji A, Okumura K, Uwatoko N, Anzoua KG, et al. DNA markers for identifying interspecific hybrids between Miscanthus sacchariflorus and Miscanthus sinensis. Grassland Science. 2015;61(3):160–166. DOI:
  7. Zhang J, Yang SY, Huang YJ, Zhou SB. The tolerance and accumulation of Miscanthus Sacchariflorus (maxim.) benth., an energy plant species, to cadmium. International Journal of Phytoremediation. 2015;17(6):538–545. DOI:
  8. Tamura K, Uwatoko N, Yamashita H, Fujimori M, Akiyama Y, Shoji A, et al. Discovery of Natural Interspecific Hybrids Between Miscanthus Sacchariflorus and Miscanthus Sinensis in Southern Japan: Morphological Characterization, Genetic Structure, and Origin. Bioenergy Research. 2016;9(1):315–325. DOI:
  9. Baybakova OV. Study into simultaneous saccharification and fermentation for bioethanol production by the example of miscanthus and oat hulls. Fundamental research. 2016;(6–1):14–18. (In Russ.).
  10. Sarkar A, Asaeda T, Wang QY, Kaneko Y, Rashid MH. Response of Miscanthus sacchariflorus to zinc stress mediated by arbuscular mycorrhizal fungi. Flora. 2017;234:60–68. DOI:
  11. Grams J, Kwapinska M, Jedrzejczyk M, Rzenicka I, Leahy JJ, Ruppert AM. Surface characterization of Miscanthus × giganteus and Willow subjected to torrefaction. Journal of Analytical and Applied Pyrolysis. 2019;138:231–241. DOI:
  12. Gismatulina YuA. Chemical composition study of sb ras miscanthus variety harvested in 2013. Fundamental research. 2014;(1):47–60. (In Russ.).
  13. Ilʹyasov SG, Cherkashin VA. Poluchenie i svoystva shchelochnogo lignina iz miskantusa kitayskogo [Production of alkaline lignin from miscanthus Chinese and its properties]. Polzunovsky vestnik. 2014;(4–2):137–142. (In Russ.).
  14. Redcay S, Koirala A, Liu JD. Effects of roll and flail conditioning systems on mowing and baling of Miscanthus × giganteus feedstock. Biosystems Engineering. 2018;172:134–143. DOI:
  15. Makarova EI, Budaeva VV. Bioconversion of non-food cellulosic biomass. Part 1. Proceedings of Universities. Applied Chemistry and Biotechnology. 2016;6(2)(17):43–50. (In Russ.). DOI:
  16. Dabkowska K, Alvarado-Morales M, Kuglarz M, Angelidaki I. Miscanthus straw as substrate for biosuccinic acid production: Focusing on pretreatment and downstream processing. Bioresource Technology. 2019;278:82–91. DOI:
  17. Gismatulina YuA, Budaeva VV. Chemical composition of five Miscanthus sinensis harvests and nitric-acid cellulose therefrom. Industrial Crops and Products. 2017;109:227–232. DOI:
  18. Hoover A, Emerson R, Ray A, Stevens D, Morgan S, Cortez M, et al. Impact of Drought on Chemical Composition and Sugar Yields From Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Miscanthus, a Tall Fescue Mixture, and Switchgrass. Frontiers in Energy Research. 2018;6. DOI:
  19. Plazek A, Dubert F, Kopec P, Krepski T, Kacorzyk P, Micek P, et al. In vitro-propagated Miscanthus × giganteus plants can be a source of diversity in terms of their chemical composition. Biomass and Bioenergy. 2015;75:142–149. DOI:
  20. Lanzerstorfer C. Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel. Journal of Environmental Sciences. 2017;54:178–183. DOI:
  21. Morgun IA, Andreeva LS. Kapelʹnoe oroshenie kak faktor intensifikatsii vegetativnogo razmnozheniya miskantusa [Drip irrigation as a factor in the intensification of miscanthus vegetative propagation]. Vestnik Belorusskoy gosudarstvennoy selʹskokhozyaystvennoy akademii [Bulletin of the Belarussian state agricultural Academy]. 2016;(4):93–95. (In Russ.).
  22. Ashman C, Awty-Carroll D, Mos M, Robson P, Clifton-Brown J. Assessing seed priming, sowing date, and mulch film to improve the germination and survival of direct-sown Miscanthus sinensis in the United Kingdom. Global Change Biology Bioenergy. 2018;10(9):612–627. DOI:
  23. Brosse N, Dufour A, Meng XZ, Sun QN, Ragauskas A. Miscanthus: a fast-growing crop for biofuels and chemicals production. Biofuels Bioproducts and Biorefining-Biofpr. 2012;6(5):580–598. DOI:
  24. Lee S, Han J, Ro HM. Interpreting the pH-dependent mechanism of simazine sorption to Miscanthus biochar produced at different pyrolysis temperatures for its application to soil. Korean Journal of Chemical Engineering. 2018;35(7):1468–1476. DOI:
  25. Bondar VS, Fursa AV. Economic ground for technologies of plant biomass growing and processing into solid fuels. The Economy of Agro-Industrial Complex. 2015;245(3):22 – 27. (In Russ.).
  26. Schafer J, Sattler M, Iqbal Y, Lewandowski I, Bunzel M. Characterization of Miscanthus cell wall polymers. Global Change Biology Bioenergy. 2019;11(1):191–205. DOI:
  27. Skiba EA. Determination procedure for biological goodness of hydrolyzates from cellulosic biomass using Saccharomyces cerevisiae Y-1693 strain. Proceedings of Universities. Applied Chemistry and Biotechnology. 2016;6(1)(16):34–44. (In Russ.).
  28. Baybakova OV. Fermentation of enzymatic hydrolyzate of miscanthus cellulose by Pachysolen tannophilus Y-1532 and Saccharomyces cerevisiae Y-1693. Fundamental research. 2014;(9–5):949–953. (In Russ.).
  29. Skiba EA, Mironova GF. Advantages of combining biocatalytic stages in bioethanol synthesis from cellulosic biomasses. Proceedings of Universities. Applied Chemistry and Biotechnology. 2016;6(4)(19):53–60. (In Russ.). DOI:
  30. Baibakova OV, Skiba EA. Biotechnological view of ethanol biosynthesis from miscanthus. Vavilov Journal of Genetics and Breeding. 2014;18(3):564–571. (In Russ.).
  31. Baibakova OV. Bioconversion of miscanthus lignocellulosic substrate into ethanol. Fundamental research. 2015; (2–13):2783–2786. (In Russ.).
  32. Peng L, Hao B, Xia T. Transgenic engineering Saccharomyces cerevisiae SF4 for efficiently fermenting ethanol using xylose. Patent CN 106701605. 2017.
  33. Gismatulina YuA. Quality of pulp obtained by the dilute nitric-acid method from miscanthus harvested in 2013. Fundamental research. 2015;(2–18):3948–3951. (In Russ.).
  34. Gismatulina YuA, Budaeva VV, Veprev SG, Sakovich GV, Shumny VK. Cellulose from various parts of Soranovskii miscanthus. Vavilov Journal of Genetics and Breeding. 2014;18(3):553–53. (In Russ.).
  35. Gladysheva EK. Bacterial cellulose x-ray study results. Fundamental research. 2015;(7–2):240–244. (In Russ.).
  36. Gismatulina YuA. Masshtabirovanie azotnokislogo sposoba polucheniya tsellyulozy iz miskantusa [Gismatulina Scaling nitrate method of obtaining cellulose from miscanthus]. Polzunovsky vestnik. 2015;(4–2):108–111. (In Russ.).
  37. Gismatulina YuA. Chemical pretreatment of miscanthus for subsequent bacterial cellulose synthesis. Fundamental research. 2017;(9–2):284–289. (In Russ.).
  38. Budaeva VV, Skiba EA, Baybakova OV, Makarova EI, Orlov SE, Kukhlenko AA, et al. Kinetics of enzymatic hydrolysis of lignocellulosic materials at different concentrations of substrat. Catalysis in Industry. 2015;(5):60–66. (In Russ.). DOI:
Как цитировать?
Miscanthus plants processing in fuel, energy, chemical and microbiological industries. Foods and Raw Materials, 2019, vol. 7, no. 2, pp. 403-411
Кемеровский государственный университет
2308-4057 (Print) /
2310-9599 (Online)
О журнале