ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Effect of pre-treatment conditions on the antiatherogenic potential of freeze-dried oyster mushrooms

Аннотация
Oyster mushroom (Pleurotus ostreatus L.) is a valuable food product. It possesses an antiatherogenic potential, which has to be preserved during processing. The paper features the production of oyster mushroom sublimates. It focuses on such pre-treatment conditions as grinding, disinfection, and cryostabilisation, and their effect on the antiatherogenic potential of oyster mushrooms. A set of in vitro experiments was performed to measure the levels of lovastatin and antioxidant, catalase, anti-inflammatory, and thrombolytic properties. Various pre-treatment conditions proved to produce different effects on the biological activity of the freeze-dried oyster mushroom product. The best results were obtained after the mushrooms were reduced to pieces of 0.5 cm, underwent UV disinfection, blanched, treated with hot air, and cryostabilised with a 1.5% apple pectin solution. The best conditions for the antioxidant properties included ozonation, UV disinfection, and cryoprotection with pectin. The critical conditions for the antioxidant properties included homogenisation, blanching, and cryostabilisation with 10% solutions of sucrose and lactose. The catalase properties did not depend on the degree of grinding and were most pronounced after ozonation. The optimal conditions for the anti-inflammatory properties included UV disinfection and cryostabilisation with lactose. Ozonation proved to be critical for anti-inflammatory properties. The optimal conditions for thrombolytic properties included ozonation and cryoprotection with a 5% sorbitol solution, while hot air disinfection proved critical. Therefore, the research provided an experimental substantiation for individual pre-treatment conditions or their combinations that turn sublimated oyster mushrooms into a valuable functional product with antiatherogenic properties.
Ключевые слова
Oyster mushroom , freeze-drying , functional food , antiatherogenic potential , lovastatin , antioxidant properties , catalase properties , anti-inflammatory properties , thrombolytic effect
СПИСОК ЛИТЕРАТУРЫ
  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart Disease and Stroke Statistics-2017 Update A Report From the American Heart Association. Circulation. 2017;135(10):E146–E603. DOI: https://doi.org/10.1161/CIR.0000000000000485.
  2. Mallika V, Goswami B, Rajappa M. Atherosclerosis Pathophysiology and the Role of Novel Risk Factors: A Clinicobiochemical Perspective. Angiology. 2007;58(5):513–522. DOI: https://doi.org/10.1177/0003319707303443.
  3. Mukhammed AA, Maksimov ML. Statiny: pobochnye ehffekty (nauchnyy obzor) [Statins: side effects (a scientific review)]. Terapevt [Therapist]. 2013;(7):78 84. (In Russ.).
  4. Mitina SS, Piskov SI, Koldunov IA. K voprosu o poiske alʹternativnykh gipolipidemicheskikh sredstv na osnove syrʹya prirodnogo proiskhozhdeniya [Alternative lipid-lowering drugs based on natural raw materials]. ‘Fiziologicheskie problemy adaptatsii’: sbornik nauchnykh statey mezhdunarodnoy konferentsii, posvyashchennoy 85-letiyu SKFU, 45-letiyu kafedry anatomii i fiziologii, edineniyu nauchnogo soobshchestva fiziologov Rossii i Respubliki Belarus [‘Physiological Problems of Adaptation’: Proceedings of the International conference dedicated to the 85th anniversary of the North Caucasus Federal University, the 45th anniversary of the Department of Anatomy and Physiology, and the union of the scientific community of physiologists of Russia and the Republic of Belarus]; 2015; Stavropol. Stavropol: North Caucasus Federal University; 2015. p. 111–113. (In Russ.).
  5. Singh SP, Sashidhara KV. Lipid lowering agents of natural origin: An account of some promising chemotypes. European Journal of Medicinal Chemistry. 2017;140:331–348. DOI: https://doi.org/10.1016/j.ejmech.2017.09.020.
  6. Carrasco-González JA, Serna-Saldívar SO, Gutiérrez-Uribe JA. Nutritional composition and nutraceutical properties of the Pleurotus fruiting bodies: Potential use as food ingredient. Journal of Food Composition and Analysis. 2017;58:69–81. DOI: https://doi.org/10.1016/j.jfca.2017.01.016.
  7. Amirullah NA, Abidin NZ, Abdullah N. The potential applications of mushrooms against some facets of atherosclerosis: A review. Food Research International. 2018;105:517–536. DOI: https://doi.org/10.1016/j.foodres.2017.11.023.
  8. Islam MR, Uddin MM. In vitro Doses and Incubations Dependent Thrombolytic Potential Study of Edible Mushrooms Pleurotus ostreatus, Ganoderma lucidum and Lentinula edodes Available in Bangladesh. British Journal of Pharmaceutical Research. 2015;7(1):44–51. DOI: https://doi.org/10.9734/BJPR/2015/18227.
  9. Zhang Y, Wang ZW, Jin G, Yang XD, Zhou HL. Regulating dyslipidemia effect of polysaccharides from Pleurotus ostreatus on fat-emulsion-induced hyperlipidemia rats. International Journal of Biological Macromolecules. 2017;101:107–116. DOI: https://doi.org/10.1016/j.ijbiomac.2017.03.084.
  10. Karomatov ID, Salomova MF. Medical value of the oyster mushroom. Biologiya i integrativnaya meditsina [Biology and Integrative Medicine]. 2017;(9):78–88. (In Russ.).
  11. Muszynska B, Grzywacz-Kisielewska A, Kala K, Gdula-Argasinska J. Anti-inflammatory properties of edible mushrooms: A review. Food Chemistry. 2018;243:373–381. DOI: https://doi.org/10.1016/j.foodchem.2017.09.149.
  12. Guillamon E, Garcia-Lafuente A, Lozano M, D’Arrigo M, Rostagno MA, Villares A, et al. Edible mushrooms: Role in the prevention of cardiovascular diseases. Fitoterapia. 2010;81(7):715–723. DOI: https://doi.org/10.1016/j.fitote.2010.06.005.
  13. Elsayed EA, El Enshasy H, Wadaan MAM, Aziz R. Mushrooms: A Potential Natural Source of Anti-Inflammatory Compounds for Medical Applications. Mediators of Inflammation. 2014;2014. DOI: https://doi.org/10.1155/2014/805841.
  14. Xu J-G, Duan J-L. Effects of Drying Methods on Physico-Chemical Properties and Antioxidant Activity of Shiitake Mushrooms (Lentinus Edodes). Agriculture and Food Sciences Research. 2015;2(2):51–55.
  15. Piskov SI, Timchenko LD, Rzhepakovsky IV, Avanesyan SS, Sizonenko MN, Areshidze DA, et al. The influence of the drying method for food properties and hypolidemic potential of oyster mushrooms (Pleurotus ostreatus). Problems of Nutrition. 2018;87(2):65–76. (In Russ.). DOI: https://doi.org/10.24411/0042-8833-2018-10020.
  16. Arshinova OYu, Oborotova NA, Sanarova EV. Vspomogatelʹnye veshchestva v tekhnologii liofilizatsii lekarstvennykh preparatov [Excipients in the technology of lyophilisation of drugs]. Drug development and registration. 2013;2(1):20–25. (In Russ.).
  17. Rabeta MS, Lin SP. Effects of Different Drying Methods on the Antioxidant Activities of Leaves and Berries of Cayratia trifolia. Sains Malaysiana. 2015;44(2):275–280. DOI: https://doi.org/10.17576/jsm-2015-4402-16.
  18. Karam MC, Petit J, Zimmer D, Djantou EB, Scher J. Effects of drying and grinding in production of fruit and vegetable powders: A review. Journal of Food Engineering. 2016;188:32–49. DOI: https://doi.org/10.1016/j.jfoodeng.2016.05.001.
  19. Rudy S, Dziki D, Krzykowski A, Gawlik-Dziki U, Polak R, Rozylo R, et al. Influence of pre-treatments and freezedrying temperature on the process kinetics and selected physico-chemical properties of cranberries (Vaccinium macrocarpon Ait.). LWT – Food Science and Technology. 2015;63(1):497–503. DOI: https://doi.org/10.1016/j.lwt.2015.03.067.
  20. Parniakov O, Bals O, Lebovka N, Vorobiev E. Pulsed electric field assisted vacuum freeze-drying of apple tissue. Innovative Food Science & Emerging Technologies. 2016;35:52–57. DOI: https://doi.org/10.1016/j.ifset.2016.04.002.
  21. Prosapio V, Norton I. Influence of osmotic dehydration pre-treatment on oven drying and freeze drying performance. LWT – Food Science and Technology. 2017;80:401–408. DOI: https://doi.org/10.1016/j.lwt.2017.03.012.
  22. Sheshma J, Raj JD. Effect of pre-drying treatments on quality characteristics of dehydrated tomato powder. International Journal of Research in Engineering & Advanced Technology. 2014;2(3).
  23. Al-Amin M, Sajjad Hossain M, Iqbal A. Effect of pre-treatments and drying methods on dehydration and rehydration characteristics of carrot. Universal Journal of Food and Nutrition Science. 2015;3(2):23–28. DOI: https://doi.org/10.13189/ujfns.2015.030201.
  24. Ando Y, Maeda Y, Mizutani K, Wakatsuki N, Hagiwara S, Nabetani H. Impact of blanching and freeze-thaw pretreatment on drying rate of carrot roots in relation to changes in cell membrane function and cell wall structure. LWT – Food Science and Technology. 2016;71:40–46. DOI: https://doi.org/10.1016/j.lwt.2016.03.019.
  25. Schneider I, Kressel G, Meyer A, Krings U, Berger RG, Hahn A. Lipid lowering effects of oyster mushroom (Pleurotus ostreatus) in humans. Journal of Functional Foods. 2011;3(1):17–24 DOI: https://doi.org/10.1016/j.jff.2010.11.004.
  26. Usall J, Ippolito A, Sisquella M, Neri F. Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology. 2016;122:30–40. DOI: https://doi.org/10.1016/j.postharvbio.2016.05.002.
  27. Oner ME, Demirci A. Ozone for Food Decontamination: Theory and Applications. In: Lelieveld H, Holah J, Gabrić D. Handbook of Hygiene Control in the Food Industry (Second Edition). Woodhead Publishing; 2016. pp. 491–501. DOI: https://doi.org/10.1016/B978-0-08-100155-4.00033-9.
  28. Galoburda R, Kuka M, Cakste I, Klava D. The effect of blanching temperature on the quality of microwave-vacuum dried mushroom Cantharellus cibarius. Agronomy Research. 2015;13(4):929–938.
  29. Escriche I, Serra JA, Gomez M, Galotto MJ. Effect of ozone treatment and storage temperature on physicochemical properties of mushrooms (Agaris bisporus). Food Science and Technology International. 2001;7(3):251–258. DOI: https://doi.org/10.1106/6a9r-dkev-adv7-y30x.
  30. Avanesyan SS, Timchenko LD, Piskov SI, Rzhepakovskiy IV, Koldunov IA, Kolosov AV. Razrabotka metodiki kolichestvennogo opredeleniya lovastatina v plodovom tele veshenki obyknovennoy (Pleurotus ostreatus) [New method of quantitative evaluationof lovastatin in the fruit body of common oyster mushroom (Pleurotus ostreatus)]. Fiziko-khimicheskaya biologiya: sbornik trudov III mezhdunarodnoy nauchnoy internet-konferentsii [Physico-Chemical Biology: Proceedings of the III international scientific Internet conference]; 2015; Stavropol. Stavropol: Stavropol State Medical University; 2015. p. 32–35. (In Russ.).
  31. Avanesyan SS, Timchenko LD, Piskov SI, Kovalev DA. TLC determination of lovastatin. Sorption and chromatographic processes. 2015;15(5):693 – 698. (In Russ.).
  32. Kanibolotskaya LV, Fedoseeva AA, Odaryuk ID, Polokhina II, Triskiba SD, Shendrik AN. Antioxidant activity of mycothalluses of edible fungі series. Nutrition Problems. 2008;19(3–4):35–38. (In Russ.).
  33. Oreshko NA, Kiselev PA, Yuraga TM, Kokhnovich NN, Kamyshnikov VS. Razrabotka test-sistem i opredelenie antiradikalʹnoy aktivnosti biologicheskikh zhidkostey i farmatsevticheskikh substantsiy prirodnogo i sinteticheskogo proiskhozhdeniya [Development of test systems and determination of the antiradical activity of biological fluids and pharmaceutical substances of natural and synthetic origin]. Free Radicals in Chemistry and Life: Book of Abstracts of the International Conference; 2015; Minsk. Minsk: Belarusian State University; 2015. p. 122–124. (In Russ.).
  34. Kimatu BM, Zhao LY, Biao Y, Ma GX, Yang WJ, Pei F, et al. Antioxidant potential of edible mushroom (Agaricus bisporus) protein hydrolysates and their ultrafiltration fractions. Food Chemistry. 2017;230:58–67. DOI: https://doi.org/10.1016/j.foodchem.2017.03.030.
  35. Velichko AK, Solovev VB, Gengin MT. Methods of laboratory definition of the common peroxide of destroying activity of enzymes of plants. Izvestia Penzenskogo gosudarstvennogo pedagogicheskogo universiteta imeni V.G. Belinskogo. 2009;(18):44–48. (In Russ.).
  36. Varghese R, Bushra M, Nair NM, Jacob JT, Thomas SM, Leena PN. Studies on preliminary phytochemical, antioxidant and anti-inflammatory activities of Pleurotus florida by in vitro method. International Journal of Pharmacy and Technology. 2015;7(3):9945–9964.
  37. Sharmila G, Brindha D. In vitro antioxidant and antithrombotic activity of Cleome viscosa. International Journal of Current Research. 2017;9(05):49750–49754.
  38. Frishman WH, Rapier RC. Lovastatin: An HMG-CoA Reductase Inhibitor for Lowering Cholesterol. Medical Clinics of North America. 1989;73(2):437–448. DOI: https://doi.org/10.1016/S0025-7125(16)30681-2.
  39. Tsioufis C, Mantzouranis E, Kalos T, Konstantinidis D, Tousoulis D. Risk Factors of Atherosclerosis: Pathophysiological Mechanisms. In: Tousoulis D, editor. Coronary Artery Disease. Academic Press; 2018. pp. 43–66. DOI: https://doi.org/10.1016/B978-0-12-811908-2.00004-0.
  40. Tsybulkin NA, Tukhvatullina GV, Tsybulkina VN, Abdrakhmanova AI. Inflammatory mechanisms in pathogenesis of atherosclerosis. Practical medicine. 2016;96(4–2):165–169. (In Russ.).
  41. Hassan N, ElHana A. Microwave drying of apple. Misr Journal of Agricultural Engineering. 2008;25(3):980–1003.
  42. Piecha M. Stability and degradation studies of cholesterol-lowering statin drugs. Nova Gorica: University of Nova Gorica; 2009. 129 p.
  43. Gunde-Cimerman N, Cimerman A. Pleurotus Fruiting Bodies Contain the Inhibitor of 3-Hydroxy-3-Methylglutaryl-Coenzyme-A Reductase-Lovastatin. Experimental Mycology. 1995;19(1):1–6. DOI: https://doi.org/10.1006/emyc.1995.1001.
  44. Chen S-Y, Ho K-J, Hsieh Y-J, Wang L-T, Mau J-L. Contents of lovastatin, gamma-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia. LWT – Food Science and Technology. 2012;47(2):274–278. DOI: https://doi.org/10.1016/j.lwt.2012.01.019.
  45. Nattoh G, Gatebe E, Musieba F, Mathara J. Bioprospecting optimal phenology for bioactive molecules in native golden yellow Pleurotus citrinopileatus Singer. Asian Pacific Journal of Tropical Biomedicine. 2016;6(2):132–142. DOI: https://doi.org/10.1016/j.apjtb.2015.10.012.
  46. Susmitha S, Vidyamol KK, Ranganayaki P, Vijayaraghavan R. Purification of Catalase Enzyme from Pleurotus Ostreatus. International Journal of Applied Biology and Pharmaceutical Technology. 2014;5(1):28–34.
  47. Pandimeena M, Prabu M, Sumathy R, Kumuthakalavalli R. Evaluation of phytochemicals and in vitro antiinflammatory, anti-diabetic activity of the white Oyster mushroom, Pleurotus florida. International Research Journal of Pharmaceutical and Applied Sciences. 2015;5(1):16–21.
  48. Paciulli M, Ganino T, Pellegrini N, Rinaldi M, Zaupa M, Fabbri A, et al. Impact of the industrial freezing process on selected vegetables – Part I. Structure, texture and antioxidant capacity. Food Research International. 2015;74:329–337. DOI: https://doi.org/10.1016/j.foodres.2014.04.019.
  49. Inacio FD, Ferreira RO, de Araujo CAV, Brugnari T, Castoldi R, Peralta RM, et al. Proteases of Wood Rot Fungi with Emphasis on the Genus Pleurotus. Biomed Research International. 2015;2015. DOI: https://doi.org/10.1155/2015/290161.
  50. Javernik S, Kreft S, Strukelj B, Vrecer F. Oxidation of lovastatin in the solid state and its stabilization with natural antioxidants. Pharmazie. 2001;56(9):738–740.
  51. Jiang TJ, Jahangir MM, Jiang ZH, Lu XY, Ying TJ. Influence of UV-C treatment on antioxidant capacity, antioxidant enzyme activity and texture of postharvest shiitake (Lentinus edodes) mushrooms during storage. Postharvest Biology and Technology. 2010;56(3):209–215. DOI: https://doi.org/10.1016/j.postharvbio.2010.01.011.
  52. Yeoh WK, Ali A, Forney CF. Effects of ozone on major antioxidants and microbial populations of fresh-cut papaya. Postharvest Biology and Technology. 2014;89:56–58. DOI: https://doi.org/10.1016/j.postharvbio.2013.11.006.
  53. Wang Q, Chu LJ, Kou LP. UV-C Treatment maintains quality and delays senescence of oyster mushroom (Pleurotus ostreatus). Scientia Horticulturae. 2017;225:380–385. DOI: https://doi.org/10.1016/j.scienta.2017.07.019.
  54. Sudheer S, Yeoh WK, Manickam S, Ali A. Effect of ozone gas as an elicitor to enhance the bioactive compounds in Ganoderma lucidum. Postharvest Biology and Technology. 2016;117:81–88. DOI: https://doi.org/10.1016/j.postharvbio.2016.01.014.
  55. Kamel SM, Thabet HA, Algadi EA. Influence of Drying Process on the Functional Properties of Some Plants. Chemistry and Materials Research. 2013;3(7).
  56. Kapoor S, Aggarwal P. Drying Method Affects Bioactive Compounds and Antioxidant Activity of Carrot. International Journal of Vegetable Science. 2014;21(5):467–481. DOI: https://doi.org/10.1080/19315260.2014.895474.
  57. Amarowicz R. Antioxidant activity of Maillard reaction products. European Journal of Lipid Science and Technology. 2009;111(2):109–111. DOI: https://doi.org/10.1002/ejlt.200900011.
  58. Lam YS, Okello EJ. Determination of Lovastatin, beta-glucan, Total Polyphenols, and Antioxidant Activity in Raw and Processed Oyster Culinary-Medicinal Mushroom, Pleurotus ostreatus (Higher Basidiomycetes). International Journal of Medicinal Mushrooms. 2015;17(2):117–128. DOI: https://doi.org/10.1615/IntJMedMushrooms.v17.i2.30.
  59. Radzki W, Ziaja-Soltys M, Nowak J, Rzymowska J, Topolska J, Slawinska A, et al. Effect of processing on the content and biological activity of polysaccharides from Pleurotus ostreatus mushroom. LWT – Food Science and Technology. 2016;66:27–33. DOI: https://doi.org/10.1016/j.lwt.2015.10.016.
  60. Arumuganathan T, Manikantan MR, Indurani C, Rai RD, Kamal S. Texture and quality parameters of oyster mushroom as influenced by drying methods. International Agrophysics. 2010;24(4):339–342.
  61. Yaseen T, Ricelli A, Albanese P, Nicoletti I, Essakhi S, Carboni C, et al. Influence of postharvest ozone treatment on decay, catalase, lipoxygenase activities, and anthocyanin content of ‘Redglobe’ table grapes. IOA-EA3G International Conference Ozone and Related Oxidants for Water Treatment, Food Processing, Agriculture, Industry, Health and Environment; 2014; Dublin. Dublin: University College Dublin; 2014.
  62. Boonkorn P, Gemma H, Sugaya S, Setha S, Uthaibutra J, Whangchai K. Impact of high-dose, short periods of ozone exposure on green mold and antioxidant enzyme activity of tangerine fruit. Postharvest Biology and Technology. 2012;67:25–28. DOI: https://doi.org/10.1016/j.postharvbio.2011.12.012.
  63. Egbebi AO. and Fakoya S. Effects of various treatments on intrinsic properties of Agaricusbisporus. European Journal of Experimental Biology. 2014;4(6):15–21.
  64. Abdulaziz L, Yaziji S, Azizieh A. Effect of Preliminarily Treatments on Quality Parameters of Artichoke with Different Preservation Methods. International Journal of ChemTech Research. 2015;7(6):2565–2572.
  65. Du B, Lin CY, Bian ZX, Xu BJ. An insight into anti-inflammatory effects of fungal beta-glucans. Trends in Food Science & Technology. 2015;41(1):49–59. DOI: https://doi.org/10.1016/j.tifs.2014.09.002.
  66. Friedman M. Mushroom Polysaccharides: Chemistry and Antiobesity, Antidiabetes, Anticancer, and Antibiotic Properties in Cells, Rodents, and Humans. Foods. 2016;5(4). DOI: https://doi.org/10.3390/foods5040080.
  67. Bonarska-Kujawa D, Cyboran S, Zylka R, Oszmianski J, Kleszczynska H. Biological Activity of Blackcurrant Extracts (Ribes nigrum L.) in Relation to Erythrocyte Membranes. Biomed Research International. 2014;2014. DOI: https://doi.org/10.1155/2014/783059.
  68. Mzoughi Z, Chakroun I, Ben Hamida S, Rihouey C, Ben Mansour H, Le Cerf D, et al. Ozone treatment of polysaccharides from Arthrocnemum indicum: Physico-chemical characterization and antiproliferative activity. International Journal of Biological Macromolecules. 2017;105:1315–1323. DOI: https://doi.org/10.1016/j.ijbiomac.2017.07.151.
  69. Kazachenko SYu, Bezrukih EG, Hohlova AI, Stupko TV, Matyushev VV, Plehanova LV. The equipment for dry spilt materials ozonation. The Bulletin of KrasGAU. 2009;29(2):184–189. (In Russ.).
  70. Ali PPM, Sapna K, Mol KRR, Bhat SG, Chandrasekaran M, Elyas KK. Trypsin Inhibitor from Edible Mushroom Pleurotus floridanus Active against Proteases of Microbial Origin. Applied Biochemistry and Biotechnology. 2014;173(1):167–178. DOI: https://doi.org/10.1007/s12010-014-0826-1.
  71. Rai RD, Arumuganathan T. Post harvest technology of mushrooms. Solan: National Research Centre for Mushroom; 2008. 84 p.
  72. de Castro RJS, Sato HH. Protease from Aspergillus oryzae: Biochemical Characterization and Application as a Potential Biocatalyst for Production of Protein Hydrolysates with Antioxidant Activities. Journal of Food Processing. 2014;2014. DOI: https://doi.org/10.1155/2014/372352.
  73. Syazin IE, Kasʹyanov GI. Fenomen krioobrabotki produktov [Phenomenon of cryoprocessing products]. Saarbrucken: Palmarium Academic Publishing; 2012. 296 p. (In Russ.).
  74. Glushkov O. Study of cryoprotectors effect on oxidation processes at storage of frozen half-finished products. Journal of Food Science and Technology-Ukraine. 2016;10(4). DOI: https://doi.org/10.15673/fst.v10i4.248.
  75. Keniyz NV. Vidy krioprotektorov, ispolʹzuemykh pri zamorazhivanii khlebobulochnykh polufabrikatov [Types of cryoprotectors used in the freezing of semi-finished bakery products]. Young Scientist. 2014;(18):236 – 238. (In Russ.).
  76. Kopjar M, Lončarić A, Pichler A. Influence of disaccharides and pectin addition on antioxidant activity of phenolic. Journal of Nutrition & Food Sciences. 2016;6(7). DOI: https://doi.org/10.4172/2155-9600.C1.032.
  77. Yang J, Chen J-F, Zhao Y-Y, Mao L-C. Effects of Drying Processes on the Antioxidant Properties in Sweet Potatoes. Agricultural Sciences in China. 2010;9(10):1522–1529. DOI: https://doi.org/10.1016/S1671-2927(09)60246-7.
  78. Wang CY. Effect of temperature preconditioning on catalase, peroxidase, and superoxide-dismutase in chilled zucchini squash. Postharvest Biology and Technology. 1995;5(1–2):67–76. DOI: https://doi.org/10.1016/0925-5214(94)00020-s.
  79. Shanskaya AI, Puchkova SM, Yakovleva TE, Ivanova RP. Vliyanie razlichnykh krioprotektorov na stabilʹnostʹ liofilizirovannykh liposom [Effect of various cryoprotectors on the stability of lyophilized liposomes]. Transfusiology. 2008;9(3):27–33. (In Russ.).
  80. Konov KB. Issledovanie metodami EHPR vozdeystviya krioprotektorov sakharozy, tregalozy, glitserina i sorbita na strukturu i dinamiku modelʹnoy lipidnoy membrany [EPR studies of the effect of cryoprotectors of sucrose, trehalose, glycerol, and sorbitol on the structure and dynamics of lipid membrane model]. Cand. phys. and math. sci. dis. Kazan: Kazan E. K. Zavoisky PhysicalTechnical Institute; 2016. 22 p.
Как цитировать?
Effect of pre-treatment conditions on the antiatherogenic potential of freeze-dried oyster mushrooms. Foods and Raw Materials, 2019, vol. 7, no. 2, pp. 375-386
DOI
http://doi.org/10.21603/2308-4057-2019-2-375-386
Издатель
Кемеровский государственный университет
htpps://kemsu.ru
ISSN
2308-4057 (Print) /
2310-9599 (Online)
О журнале