ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Pulsed infrared radiation for drying raw materials of plant and animal origin

Аннотация
The paper describes physical characteristics of drying animal- and plant-based raw materials with pulsed infrared emitters. Furthermore, it discusses how to select and use infrared emitters to produce high quality products with a long shelf-life. Using an experimental facility, we identified basic patterns of changes in the heat flux density. We also analysed the drying thermograms and assessed the influence of process factors on the removal of moisture from raw materials and the preservation of biologically active substances in dried and concentrated products. We determined specific kinetics of drying in different modes of power supply and selected the most efficient pulsed cera- mic emitters. These emitters had a high rate of heat transfer and an ability to accurately target molecular bonds, thus reducing the drying time and energy costs. Mathematical modelling enabled us to obtain specific values of process parameters for pulsed infrared drying of plant materials. The heating time constant was calculated for root and tuber vegetables, depending on their moisture content and size. The study showed that root and tuber vegetables should not be heated to more than 60°C when irradiated with a 500 W medium-wave emitter at a working distance of 250 mm during a full 10-minute cycle. The optimal modes of drying liquid products with milk and plant proteins included a heating power of 400 W, a radiant heating temperature of 60°C, and a layer thickness of 10 mm. The selected modes of pulsed infrared drying of sugar-containing root and tuber vegetables reduced the duration of moisture removal by 16–20% and cut energy costs by 16.6%. This unconventional method of infrared drying of whole milk, whey, whey drinks, and milk mixture preserves beneficial microflora and increases the nutritional value and shelf-life, with a pos- sible content of chemically bound water of polymolecular and monomolecular adsorption ranging from 10 to 15.58%.
Ключевые слова
Infrared , pulsed IR emitters , plant material , liquid raw milk , temperature , features , water
СПИСОК ЛИТЕРАТУРЫ
  1. Prosekov A., Petrov A., Ulrich E., et al. A selection of conditions for the biodegradation of poultry wastes industry. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2016, vol. 7, no. 3, pp. 2659–2664.
  2. Danilchuk T.N. and Ganina V.I. Prospects of using extremely low doses of physical factors impact in food biotechnology.Foods and Raw Materials, 2018, vol. 6, no. 2, pp. 305–313. DOI: https://doi.org/10.21603/2308-4057-2018-2-305-313.
  3. Salehi F. and Kashaninejad M. Modeling of moisture loss kinetics and color changes in the surface of lemon slice during the combined infrared-vacuum drying. Information Processing in Agriculture, 2018, vol. 5, no. 4, pp. 516–523. DOI: https://doi.org/10.1016/j.inpa.2018.05.006.
  4. Kulinich A. Innovatsii v oblasti sushki moloka i syvorotki [Innovations in the drying of milk and whey]. Milk Proces- sing, 2010, vol. 131, no. 9, pp. 48–49. (In Russ.).
  5. Galstyan A.G., Buyanova E.O., and Ivanova A.Yu. New technology in the production of concentrated milk drinks.Food Processing: Techniques and Technology, 2011, vol. 20, no. 1, pp. 14–18. (In Russ.).
  6. Nowak D. and Lewicki P.P. Infrared drying of apple slices. Innovative Food Science and Emerging Technologies, 2004, vol. 5, no. 3, pp. 353–360. DOI: https://doi.org/10.1016/j.ifset.2004.03.003.
  7. Borah A., Hazarika K., and Khayer S.M. Drying kinetics of whole and sliced turmeric rhizomes (Curcuma longa L.) in a solar conduction dryer. Information Processing in Agriculture, 2015, vol. 2, no. 2, pp. 85–92. DOI: https://doi. org/10.1016/j.inpa.2015.06.002.
  8. Nawirska A., Figiel A., Kucharska A.Z., Sokół-Łętowska A., and Biesiada A. Drying kinetics and quality parameters of pumpkin slices dehydrated using different methods. Journal of Food Engineering, 2009, vol. 94, no. 1, pp. 14–20. DOI: https://doi.org/10.1016/j.jfoodeng.2009.02.025.
  9. Ashtiani S.H.M., Salarikia A., and Golzarian M.R. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments. Information Processing in Agriculture, 2017, vol. 4, no. 2, pp. 128–139. DOI: https://doi.org/10.1016/j.inpa.2017.03.001.
  10. Chen D., Wiertzema J., Peng P., et al. Effects of intense pulsed light on Cronobacter sakazakii inoculated in non-fat dry milk. Journal of Food Engineering, 2018, vol. 238, pp. 178–187. DOI: https://doi.org/10.1016/j.jfoodeng.2018.06.022.
  11. Babich O.O. and Prosekov A.Y. Optimization of L-Phenylalanine-Ammonia-Lyase Liophilization. Biomeditsinskaya Khimiya, 2013, vol. 59, no. 6, pp. 682–692. (In Russ.).
  12. Bondaruk J., Markowski M., and Blaszczak W. Effect of drying conditions on the quality of vacuum-microwave dried potato cubes. Journal of Food Engineering, 2007, vol. 81, no. 2, pp. 306–312. DOI: https://doi.org/10.1016/j.jfo- odeng.2006.10.028.
  13. Ochirov V.D. Obosnovanie rezhimov IK-ehnergopodvoda v tekhnologii sushki korneplodov morkovi impulʹsnymi keramicheskimi preobrazovatelyami izlucheniya. Diss. kand. tekhn. nauk [Substantiation of the IR energy supply modes in the technology for drying carrots with pulsed ceramic converters of radiation. Cand. eng. sci. diss.]. Kras- noyarsk, 2011, 189 p.
  14. Altukhov I.V. The experimental research results of the infrared drying of sugar-containing root crops. Bulletin of KrasGAU, 2014, vol. 89, no. 2, pp. 162–167. (In Russ.).
  15. Innocente N., Segat A., Manzocco L., et al. Effect of pulsed light on total microbial count and alkaline phosphatase activity of raw milk. International Dairy Journal, 2014, vol. 39, no. 1, pp. 108–112. DOI: https://doi.org/10.1016/j. idairyj.2014.05.009.
  16. Altukhov I.V. and Tsuglenok N.V. The operational features of pulse IR-emitters in root crop drying technology. Bul- letin of Altai State Agricultural University, 2015, vol. 4, no. 126, pp. 109–104. (In Russ.).
  17. John D. and Ramaswamy H.S. Pulsed light technology to enhance food safety and quality: a mini-review. Current Opinion in Food Science, 2018, vol. 23, pp. 70–79. DOI: https://doi.org/10.1016/j.cofs.2018.06.004.
  18. Sharma G.P., Verma R.C., and Pathare P.B. Thin-layer infrared radiation drying of onion slices. Journal of Food En- gineering, 2005, vol. 67, no. 3, pp. 361–366. DOI: https://doi.org/10.1016/j.jfoodeng.2004.05.002.
  19. Prosekov A.Yu., Mudrikova O.V., and Babich O.O. Determination of cinnamic acid by capillary zone electrophoresisusing ion-pair reagents. Journal of Analytical Chemistry, 2012, vol. 67, no. 5, pp. 531. (In Russ.).
  20. Doymaz I. Infrared drying of sweet potato (Ipomoea batatas L.) slices. Journal of Food Science and Technology, 2012, vol. 49, no. 6, pp. 760–766. DOI: https://doi.org/10.1007/s13197-010-0217-8.
  21. Altukhov I.V., Ochirov V.D., Bykova S.M., and Pozdeeva N.I. Time constant of carrot root heat. Vestnik of the Federal state educational institution of higher professional education “Moscow State Agroengineering University named afterV.P. Goryachkin”, 2013, vol. 58, no. 2, pp. 10–11. (In Russ.).
  22. Prosekov A., Babich O., Kriger O., et al. Functional properties of the enzyme-modified protein from oat bran. Food Bioscience, 2018, vol. 24, pp. 46–49. DOI: https://doi.org/10.1016/j.fbio.2018.05.003
  23. Garau M.C., Simal S., Femenia A., and Rosselló C. Drying of orange skin: drying kinetics modelling and functional properties. Journal of Food Engineering, 2006, vol. 75, no. 2, pp. 288–295. DOI: https://doi.org/10.1016/j.jfo- odeng.2005.04.017.
  24. Salehi F., Kashaninejad M., and Jafarianlari A. Drying kinetics and characteristics of combined infrared-vacuum drying of button mushroom slices. Heat and Mass Transfer, 2017, vol. 53, no. 5, pp. 1751–1759. DOI: https://doi. org/10.1007/s00231-016-1931-1
  25. Altukhov I.V. Discrete IK-energopodvod application in drying technology of sacchariferous root crops. Vestnik IrG- SHA, 2013, no. 55, pp. 100–104. (In Russ.).
  26. Siegel R. and Howell J. Thermal radiation heat transfer. New York: McGraw-Hill Publ., 1972. 814 p. (Russ. ed.:Zigelʹ R. and Khauehll Dzh. Teploobmen izlucheniem. Moscow: Mir Publ., 1975. 934 p.).
  27. Altukhov I.V. Snizhenie ehnergozatrat v protsessakh sushki plodov lekarstvennykh rasteniy putem upravleniya pre- ryvnym IK oblucheniem. Diss. kand.tekhn. nauk [Reduction of energy consumption in the process of drying fruits of medicinal plants by controlling discontinuous IR irradiation Cand. eng. sci. diss.]. Irkutsk, 2000, 230 p.
  28. Tsuglenok N.V. Formirovanie i razvitie struktury ehlektrotermicheskikh kompleksov podgotovki semyan k posevu. Diss. dokt. tekhn. nauk [The formation and development of the structure of electrothermal complexes to prepare seeds for sowing. Dr. eng. sci. diss.]. Barnaul, 2000, 44 p.
  29. Tsuglenok N.V. and Hudonogov I.A. Dinamicheskaya modelʹ vzaimodeystviya informatsionno-ehnergeticheskikh po- tokov IK- i SVCH- ehnergopodvoda v ehlektrotekhnologii ozdorovitelʹnogo chaya [The dynamic model of interaction between information and energy flows in the IR and microwave energy supply in the electrotechnology for revitalizing tea]. Bulletin KrasGAU, 2006, no. 5, pp. 246–250. (In Russ.).
  30. Buyanova E.O. Razrabotka tekhnologii kontsentrirovannykh kislomolochnykh produktov s primeneniem vakuum - ra- diatsionnogo obezvozhivaniya. Diss. kand. tekhn. nauk [Development of technology for concentrated fermented dairy products using vacuum radiation dehydration. Cand. eng. sci. diss.]. Kemerovo, 2011, 22 p.
  31. Technological bases for vacuum concentrating of milk whey. Dairy industry, 2017, no. 7, pp. 27–31. (In Russ.).
  32. Buyanova I.V. and Kotlyarova M.V. Vacuum decomposition of dairy raw material under infrared energy supply. Materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii “Nauchnye innovatsii – agrarnomu proizvodstvu” [Proceedings of the international scientific and practical conference “Scientific Innovations for Agricultural Produc- tion”]. Omsk, 2018, pp. 1198–1201. (In Russ.).
  33. Timakova R.T., Tikhonov S.L., Tikhonova N.V., and Gorlov I.F. Effect of various doses of ionizing radiation on the safety of meat semi-finished products. Foods and Raw Materials, 2018, vol. 6, no. 1, pp. 120–127. DOI: https://doi. org/10.21603/2308-4057-2018-1-120-127.
Как цитировать?
Pulsed infrared radiation for drying raw materials of plant and animal origin. Foods and Raw Materials, 2019, vol. 7, no. 1, pp. 151-160
DOI
http://doi.org/10.21603/2308-4057-2019-1-151-160
Издатель
Кемеровский государственный университет
htpps://kemsu.ru
ISSN
2308-4057 (Print) /
2310-9599 (Online)
О журнале