ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Optimisation of important processing conditions for rice bran sourdough fermentation using Lactobacillus plantarum

Аннотация
The potentials of rice bran sourdough in bread making are recently gaining popularity. However, there is no information on the influence of processing conditions on the quality attributes of rice bran sourdough. To inves- tigate the influence of fermentation time and temperature on the levels of acidity (pH and TTA) in rice bran sour- dough fermented with L. plantarum, we applied response surface methodology (RSM). Furthermore, we studied the effect of different fermentation time and temperature on the total phenolic and volatile compounds in the sourdough. GC/MS measurements for the evolution of aroma volatile compounds (VOCs) in the rice bran sourdoughs were conducted. The higher and longer the fermentation temperature and time, the higher the acidity levels in the sour- doughs. Fermentation temperature and time do not have a significant effect on the total phenolic sourdough con- tents. Forty-seven VOCs were detected in the rice bran sourdoughs. The major VOCs were acetic acids, ethanol, 2-Methoxy-4-vinylphenol, Hexadecanoic acid, 1-(hydroxymethyl)-1,2-ethanediyl ester, acetoin, and 2-methoxy-Phe- nol. The sourdough fermented at 35°C for 13 ho contained the largest number (27) of aroma compounds and had the highest acidity. These fermentation conditions are close to the optimal parameters (temperature – 33°C, duration – 12.5 hours), obtained as a result of applying RSM for rice bran fermentation. Thus, high quality bran sourdough can be produced at the temperature of 33°C for 12.5 hours. The results of this study will be useful to produce a quality rice bran sourdough bread with appealing aroma and a long shelf-life.
Ключевые слова
Rice bran , acidity , Response surface methodology , Lactobacillus plantarum , HS-SPME , GC/MS , volatile compounds
СПИСОК ЛИТЕРАТУРЫ
  1. Chinma C.E., Ramakrishnan Y., Ilowefah M., Hanis-Syazwani M., and Muhammad K. Properties of cereal brans: a review. Cereal Chemistry, 2015, vol. 92, pp. 1–7. DOI: https://doi.org/10.1094/CCHEM-10-13-0221-RW.
  2. Katina K., Salmenkallio-Marttila M., Partanen R., Forssell P., and Autio K. Effects of sourdough and enzymes on staling of high-fibre wheat bread. LWT – Food Science Technology, 2006, vol. 39, no. 5, pp. 479–491. DOI: https:// doi.org/10.1016/j.lwt.2005.03.013.
  3. Coda R., Katina K., and Rizzello C.G. Bran bioprocessing for enhanced functional properties. Current Opinion in Food Science, 2015, vol. 1, no. 1, pp. 50–55. DOI: https://doi.org/10.1016/j.cofs.2014.11.007.
  4. Sanz Penella J.M., Collar C., and Haros M. Effect of wheat bran and enzyme addition on dough functional perfor- mance and phytic acid levels in bread. Journal of Cereal Science, 2008, vol. 48, no. 3, pp. 715–721. DOI: https://doi. org/10.1016/j.jcs.2008.03.006.
  5. Katina K., Laitila A., Juvonen R., et al. Bran fermentation as a means to enhance technological properties and bioac- tivity of rye. Food Microbiology, 2007, vol. 24, no. 2, pp. 175–186. DOI: https://doi.org/10.1016/j.fm.2006.07.012.
  6. Coda R., Kärki I., Nordlund E., et al. Influence of particle size on bioprocess induced changes on technological func- tionality of wheat bran. Food Microbiology, 2014, vol. 37, pp. 69–77. DOI: https://doi.org/10.1016/j.fm.2013.05.011.
  7. Kaseleht K., Paalme T., Mihhalevski A., and Sarand I. Analysis of volatile compounds produced by different species of lactobacilli in rye sourdough using multiple headspace extraction. International Journal of Food ScienceTechnolo- gy, 2011, vol. 46, no. 9, pp. 1940–1946. DOI: https://doi.org/10.1111/j.1365-2621.2011.02705.x.
  8. Gobbetti M., Rizzello C.G., Di Cagno R., and De Angelis M. How the sourdough may affect the functional features of leavened baked goods. Food Microbiology, 2014, vol. 37, pp. 30–40. DOI: https://doi.org/10.1016/j.fm.2013.04.012.
  9. Corsetti A., Gobbetti M., De Marco B., et al. Combined Effect of Sourdough Lactic Acid Bacteria and Additives on Bread Firmness and Staling. Journal of Agricultural and Food Chemistry, 2000, vol. 48, no. 7, pp. 3044–3051. DOI: https://doi.org/10.1021/jf990853e.
  10. Crowley P., Schober T., Clarke C., and Arendt E. The effect of storage period on textural and crumb grain charac- teristics of sourdough wheat bread. European Food Research and Technology, 2002, vol. 214, no. 6, pp. 489–496. DOI: https://doi.org/10.1007/s00217-002-0500-7.
  11. Moore M.M., Bello F.D., and Arendt E.K. Sourdough fermented by Lactobacillus plantarum FST 1.7 improves the quality and shelf life of gluten-free bread. European Food Research Technology, 2008, vol. 226, no. 6, pp. 1309–1316. DOI: https://doi.org/10.1007/s00217-007-0659-z.
  12. Torrieri E., Pepe O., Ventorino V., Masi P., and Cavella S. Effect of sourdough at different concentrations on qual- ity and shelf life of bread. LWT – Food Science Technology, 2014, vol. 56, no. 2, pp. 508–516. DOI: https://doi. org/10.1016/j.lwt.2013.12.005.
  13. Torkamani M.G., Razavi S.H., and Gharibzahedi S.M.T. Critical quality of Iranian “Taftoon” breads as affected by the addition of rice bran sourdough with different lactobacilli. Quality Assurance Safety Crops Foods, 2015, vol. 7, no. 3, pp. 305–311. DOI: https://doi.org/10.3920/QAS2013.0375.
  14. Farahmand E., Razavi S.H., Yarmand M.S., and Morovatpour M. Development of Iranian rice-bran sourdough breads: physicochemical, microbiological and sensorial characteristics during storage period. Quality Assurance Safety Crops Foods, 2015, vol. 7, no. 3, pp. 295–303. DOI: https://doi.org/10.3920/QAS2013.0334.
  15. Petel C., Onno B., and Prost C. Sourdough volatile compounds and their contribution to bread: A review. Trends Food Science and Technology, 2017, vol. 59, pp. 105–123. DOI: https://doi.org/10.1016/j.tifs.2016.10.015.
  16. Meuser F. and Valentin M. Fermented doughs in bread production. In: Hui Y.H., Meunier-Goddik L., Josephsen J., Nip W.-K., Stanfield P.S.(eds) Handbook of Food and Beverage Fermentation Technology. New York: CRC Press Publ., 2004. 757–782 p.
  17. Brandt M.J., Hammes W.P., and Ganzle M.G. Effects of process parameters on growth and metabolism of Lactobacil- lus sanfranciscencis and Candida humilis during rye sourdough fermentation. European Food Research Technology, 2004, vol. 218, no. 4, pp. 333–338. DOI: https://doi.org/10.1007/s00217-003-0867-0.
  18. Katina K., Poutanen K., and Autio K. Influence and Interactions of Processing Conditions and Starter Culture on Formation of Acids, Volatile Compounds, and Amino Acids in Wheat Sourdoughs. Cereal Chemistry, 2004, vol. 81, no. 5, pp. 598–610. DOI: https://doi.org/10.1094/CCHEM.2004.81.5.598.
  19. Bezerraa M.A., Santelli R.E., Oliveiraa E.P., Villar L.S., and Escaleira L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008, vol. 76, no. 5, pp. 965–977. DOI: https://doi. org/10.1016/j.talanta.2008.05.019.
  20. Chinma C. E., Ilowefah M., and Muhammad K. Optimization of Rice Bran Fermentation Conditions Enhanced by Baker’s Yeast for Extraction of Protein Concentrate. Nigeria Food Journal, 2014, vol. 32, no. 1, pp. 126–132. DOI: https://doi.org/10.1016/S0189-7241(15)30105-3.
  21. Hanis-Syazwani M., Bolarinwa I.F., Lasekan O., and Muhammad K. Influence of starter culture on the physicochem- ical properties of rice bran sourdough and physical quality of sourdough bread. Food Research, 2018, vol. 2, no. 4, pp. 340–349. DOI: https://doi.org/10.26656/fr.2017.2(4).045.
  22. Hansen A. and Schieberle P. Generation of aroma compounds during sourdough fermentation: applied and fundamen- tal aspects. Trends in Food Science and Technology, 2005, vol. 16, no. 1–3, pp. 85–94. DOI: https://doi.org/10.1016/j. tifs.2004.03.007.
  23. Sukhonthara S., Theerakulkait C., and Miyazawa M. Characterization of Volatile Aroma Compounds from Red andBlack Rice Bran. Journal of Oleo Science, 2009, vol. 58, no.3, pp. 155–161. DOI: https://doi.org/10.5650/jos.58.155.
  24. Joglekar A.M. and May A.T. Product excellence through design of experiments. Cereal Food World, 1987, vol. 32, pp. 857–868.
  25. Gül H., Özçelik S., Sa˘gdıç O., and Certel M. Sourdough bread production with lactobacilli and S. cerevisiae isolated from sourdoughs. Process Biochemistry, 2005, vol. 40, no. 2, pp. 691–697. DOI: https://doi.org/10.1016/j.proc- bio.2004.01.044.
  26. Hansen A. and Hansen B. Influence of Wheat Flour Type on the Production of Flavour Compounds in Wheat Sour- doughs. Cereal Science, 1994, vol. 19, no. 2, pp. 185–190. DOI: https://doi.org/10.1006/jcrs.1994.1025.
  27. Brummer J.M. and Lorenz K. European developments in wheat sourdoughs. Cereal Foods World, 1991, vol. 36, pp. 310–314.
  28. Thondre P.S., Ryan L., and Henry C.J.K. Barley ß-glucan extracts as rich sources of polyphenols and antioxidants.Food Chemistry, 2011, vol. 126, no. 1, pp. 72–77. DOI: https://doi.org/10.1016/j.foodchem.2010.10.074.
  29. Nevskayaa E.V., Borodulinb D.M., Potekhac V.L., et al. Development of integrated technology and assortment of long-life rye-wheat bakery products. Foods and Raw Materials, 2018, vol. 6, no. 1, pp. 99–109. DOI: https://doi. org/10.21603/2308-4057-2018-1-99-109.
  30. Aponte M., Boscaino F., Sorrentino A., et al. Volatile compounds and bacterial community dynamics of chestnut- flour-based sourdoughs. Food Chemistry, 2013, vol. 141, no. 3, pp. 2394–2404. DOI: https://doi.org/10.1016/j. foodchem.2013.05.052.
  31. Cirlini M., Dall’Asta C., Silvanini A., et al. Volatile finger printing of chestnut flours from traditional Emilia Romagna (Italy) cultivars. Food Chemistry, 2012, vol. 134, no. 2, pp. 662–668. DOI: https://doi.org/10.1016/j.food- chem.2012.02.151.
  32. Van den Dool H. and Kratz P.D. A generalization of the reaction of the retention index system including linear tem- perature programmed gas–liquid partition chromatography. Journal of Chromatography A, 1963, vol. 11, pp. 463–471.
  33. Flander L., Suortti T., Katina K., and Poutanen K. Effects of wheat sourdough process on the quality of mixed oat- wheat bread. LWT – Food Science Technology, 2011, vol. 44, no. 3, pp. 656–664. DOI: https://doi.org/10.1016/j. lwt.2010.11.007.
  34. Katina K., Liukkonen K-H., Kaukovirta-Norja A., et al. Fermentation-induced changes in the nutritional value of na- tive and germinated rye. Journal of Cereal Science, 2007, vol. 46, no. 3, pp. 348–355. DOI: https://doi.org/10.1016/j. jcs.2007.07.006.
  35. Loponen J., Mikola M., Katina K., Sontag-Strohm T., and Salovaara H. Degradation of HMW Glutenins During Wheat Sourdough Fermentations. Cereal Chemistry, 2004, vol. 81, no. 1, pp. 87–90. DOI: https://doi.org/10.1094/ CCHEM.2004.81.1.87.
  36. FAO/WHO (2001). Summary of evaluations performed by the Joint FAO/WHO Expert Committee on food additives (2-methoxy-4-vinylphenol). Available at: http://www.inchem.org/documents/jecfa/jeceval/jec_1395.htm. (accessed 12 September 2018).
  37. De Vuyst L., Harth H., Kerrebroeck S.V., and Leroy F. Yeast diversity of sourdoughs and associated metabolic prop- erties and functionalities. International Journal of Food Microbiology, 2016, vol. 239, pp. 26–34. DOI: https://doi. org/10.1016/j.ijfoodmicro.2016.07.018.
  38. Corsetti A. and Settanni L. Lactobacilli in sourdough fermentation. Food Research International, 2007, vol. 40, no. 5, pp. 539–558. DOI: https://doi.org/10.1016/j.foodres.2006.11.001.
  39. Pizarro F. and Franco F. Volatile Organic Compounds at Early Stages of Sourdough Preparation Via Static Headspace and GC/MS Analysis. Current Research in Nutrition and Food Science, 2017, vol. 5, pp. 89–99. DOI: https://doi. org/10.12944/CRNFSJ.5.2.05.
  40. Shokery E.S., El-Ziney M.G.,Yossef A.H., and Mashaly R.I. Effect of Green Tea and Moringa Leave Extracts Fortifi- cation on the Physicochemical, Rheological, Sensory and Antioxidant Properties of Set-Type Yoghurt. Advance Dairy Research, 2017, vol. 5, no. 2, pp. 1–10. DOI: https://doi.org/10.4172/2329-888X.1000179.
  41. Özgül-Yücel S. and Türkay S. Variables affecting the yields of methyl esters derived from in situ esterification of rice bran oil. Journal of American Oil Chemistry Society, 2002, vol. 79, no. 6, pp. 611–614. DOI: https://doi.org/10.1007/ s11746-002-0531-5.
  42. Kim J. and Lee Y. Study of Maillard reaction products derived from aqueous model systems with different peptide chain lengths. Food Chemistry, 2009, vol. 116, no. 4, pp. 846–853. DOI: https://doi.org/10.1016/j.foodchem.2009.03.033.
  43. Hansen A. and Hansen B. Flavour of sourdough wheat bread crumb. Journal of Food Control Research, 1996, vol. 202, no. 3, pp. 244–249. DOI: https://doi.org/10.1007/BF01263548.
  44. Birch A.N., Petersen M.A., and Hansen Å.S. REVIEW: Aroma of Wheat Bread Crumb. Cereal Chemistry, 2014, vol. 91, no. 2, pp. 105–114. DOI: https://doi.org/10.1094/CCHEM-06-13-0121-RW.
  45. Pico J., Bernal J., and Gómez M. Wheat bread aroma compounds in crumb and crust: A review. Food Research Inter- national, 2015, vol. 75, pp. 200–215. DOI: https://doi.org/10.1016/j.foodres.2015.05.051.
  46. Saunders R.M. The properties of rice bran as a foodstuff. Cereal Foods World, 1990, vol. 35, no. 7, pp. 632–636.
  47. Prakash J. Rice bran proteins: Properties and food uses. Critical Review of Food Science and Nutrition, 1996, vol. 36, no. 6, pp. 537–552. DOI: https://doi.org/10.1080/10408399609527738.
  48. Janes D., Kantar D., Kreft S., and Prosen H. Identification of buckwheat (Fagopyrum esculentum Moench) aroma compounds with GC-MS. Food Chemistry, 2008, vol. 112, no. 1, pp. 120–24. DOI: https://doi.org/10.1016/j.food- chem.2008.05.048.
  49. Gruber M.A. The flavor contributions of kilned and roasted products to finished beer styles. Technical Quarterly, 2010, vol. 38, pp. 227–233.
  50. Matsakidou A., Blekas G., and Paraskevopoulou A. Aroma and physical characteristics of cakes prepared by replacing margarine with extra virgin olive oil. LWT – Food Science Technology, 2010, vol. 43, no. 6, pp. 949–957. DOI: https:// doi.org/10.1016/j.lwt.2010.02.002.
  51. Martins S.I. and Boekel M.A. A kinetic model for the glucose/glycine Maillard reaction pathways. Food Chemistry, 2005, vol. 90, no. 1–2, pp. 257–269. DOI: https://doi.org/10.1016/j.foodchem.2004.04.006.
  52. Raffo A., Carcea M., Castagna C., and Magri A. Improvement of a headspace solid Phase microextraction-gas/chroma- tography mass spectrometry method for the analysis of wheat bread volatile compounds. Journal of Chromatography A, 2015, vol. 1406, pp. 266–278. DOI: https://doi.org/10.1016/j.chroma.2015.06.009.
  53. Ray H., Majumdar S., Biswas S.P., et al. Characterization of the Volatile Aroma Compounds from the Concrete and Jasmine Flowers Grown in India. Chemical Engineering Transactions, 2014, vol. 40, pp. 265–270. DOI: https://doi. org/10.3303/CET1440045.
Как цитировать?
Optimisation of important processing conditions for rice bran sourdough fermentation using Lactobacillus plantarum. Foods and Raw Materials, 2019, vol. 7, no. 1, pp. 131-142
DOI
http://doi.org/10.21603/2308-4057-2019-1-131-142
Издатель
Кемеровский государственный университет
htpps://kemsu.ru
ISSN
2308-4057 (Print) /
2310-9599 (Online)
О журнале