ISSN 2308-4057 (Print),
ISSN 2310-9599 (Online)

Functional dairy products enriched with plant ingredients

Abstract
Milk and dairy products are staple foods in the diet of all social groups. Plant additives are of multifunctional use in the dairy industry. Wild plants are a source of vitamins, minerals, and other biologically active substances. Due to these compounds, they improve digestion, cardiovascular activity, and emotional state. This review describes the latest trends in creating functional milk drinks enriched with plant components. They include drinks based on whole milk and cream, dairy by-products (whey, buttermilk), as well as fermented milk drinks with probiotic cultures (kefir, drinking yogurt). We found that aqueous extracts were most commonly introduced into milk raw materials. Fruits and berries were dried and added to milk raw materials in the powder form. Special attention was paid to ‘hairy roots’ as a promising technology for producing various functional foods. In addition to being economically viable, this technology can help us expand the range of plant materials with endangered species. Functional milk-based drinks enriched with plant extracts can improve the immune system and be used as part of supportive therapy. They are also suitable for daily use to replenish the balance of essential nutrients. These properties make their production a promising direction in the dairy industry.
Keywords
Milk drinks, plant extracts, functional ingredients, biologically active substances
REFERENCES
  1. Novye vozmozhnosti molochnogo rynka Rossii: funktsionalʹnye produkty i tekhnicheskie ingredient [New opportunities for the Russian dairy market: functional products and technical ingredients]. Pishchevaya industriya [Food industry]. 3028;37(3):8–10. (In Russ.).
  2. Lazareva ON, Vysokogorsky VE, Voronova TV. Influence of water extracts from vegetable raw material on oxidation properties of milk produce. Polythematic online scientific journal of Kuban State Agrarian University. 2007;(31): 105–115. (In Russ.).
  3. Vitman MA, Pilipenko TV. Use of complex additives from plant raw material in development of products of healthy nutrition. Mezhdunarodnaya nauchno-prakticheskaya konferentsiya, posvyashchennaya pamyati Vasiliya Matveevicha Gorbatova [The international scientific and practical conference dedicated to the memory of Vasily M. Gorbatov]. 2016;(1):74–75. (In Russ.).
  4. Ogneva OA. Razrabotka tekhnologiy fruktovo-ovoshchnykh produktov s bifidogennymi svoystvami [Developing fruit and vegetable products with bifidogenic properties]. Cand. eng. sci. diss. Krasnodar: North Caucasian Regional Research Institute of Horticulture and Viticulture; 2015. 159 p.
  5. Myakinnikova EI, Kasyanov GI. The creation of new types of soft drinks on the basis of aromatic, medicinal plants and whey. Science. Engineering. Technology (polytechnical bulletin). 2015;(1):141–149. (In Russ.).
  6. Lenka D, Lenka D, Libor K. Antimicrobial activity of aqueous herbal extracts. MendelNet. 2014;6:403–406.
  7. Al-Turki AI, El-Ziney MG, Abdel-Salam AM. Chemical and anti-bacterial characterization of aqueous extracts of oregano, marjoram, sage and licorice and their application in milk and labneh. Journal of Food, Agriculture and Environment. 2008;6(1):39–44.
  8. Huvaere K, Skibsted LH. Flavonoids protecting food and beverages against light. Journal of the Science of Food and Agriculture. 2015;95(1):20–35. DOI: https://doi.org/10.1002/jsfa.6796
  9. Filippov SV, Kozlova OS. Naturalʹnye ingredienty dlya proizvodstva funktsionalʹnykh produktov [Natural ingredients for functional products]. Milk Processing. 2010;129(7):20–21. (In Russ.).
  10. Glukhova EN, Pilipenko TV. The study of the quality of functional additives, based on plant material. Problemy ehkonomiki i upravleniya v torgovle i promyshlennosti [Economic and management problems in commerce and industry]. 2014;(S1):90–94. (In Russ.).
  11. Kryuchkova VV, Kokina TYu, Scripin PV, Telepene MA. The choice of method and process step of making aronia and oligofructose in the production of a functional product. Vestnik of Don State Agrarian University. 2014;14(4–1): 85–92. (In Russ.).
  12. Zhukova LP. Identification of biologically active substances extracts of vegetable raw material used for the enrichment of drinking milk products. Technology and merchandising of the innovative foodstuff. 2012;12(1):48–52. (In Russ.).
  13. Ramos LR, Santos JS, Daguer H, Valese AC, Cruz AG, Granato D. Analytical optimization of a phenolic-rich herbal extract and supplementation in fermented milk containing sweet potato pulp. Food Chemistry. 2017;221:950–958. DOI: https://doi.org/10.1016/j.foodchem.2016.11.069.
  14. Keldibekova DA, Mamaev AV. Perspektivy ispolʹzovaniya biologicheski aktivnogo kompleksa shipovnika v tekhnologii funktsionalʹnogo syvorotochnogo napitka [Prospects for using the biologically active rosehip complex in the production of functional whey drink]. Setevoy nauchnyy zhurnal OrelGAU [OrelGAU network scientific journal].2014;2(1):44–47. (In Russ.).
  15. Porotova EYu, Kaledina MV, Shevchenko NP, Ukolova OV. Phytoproducts with extracts of herbal raw materials of the crimean peninsula on the basis of serumal-polysaccharidic fraction. Mezhdunarodnyy studencheskiy nauchnyy vestnik [International Student Science Bulletin]. 2017;64(10–3):90–94. (In Russ.). DOI: https://doi.org/10.23670/IRJ.2017.64.025.
  16. Cherevach EI, Tenkovskaya LA. The development of technology of functional beverages based on whey and plant extracts. Food Processing: Techniques and Technology. 2015;39(4):99–105. (In Russ.).
  17. Matyunina OI, Manzhesov VI, Kurchaeva EE. Modern approaches to the creation of functional products power using the by-products of milk production and plant material. European student scientific journal. 2018;(3–2):254–257. (In Russ.).
  18. Khramtsov AG, Vasilisin SV, Ryabtseva SA, Vorotnikova TS. Originalʹnye napitki iz molochnoy syvorotki pod brehndom “peyte na zdorovʹe! [Original whey drinks branded ‘Drink to your health!’]. Dairy Industry. 2006;(6): 88–89. (In Russ.).
  19. Danilov a NV. Ispolʹzovanie dikorastushchikh rasteniy mestnogo regiona v molochnykh produktakh funktsionalʹnogo naznacheniya [The use of local wild plants in functional dairy products]. Vesti MANEHB v omskoy oblasti [Chronicle of the International Academy of Sciences in Ecology and Safety in the Omsk region]. 2013;2(2):15–18. (In Russ.).
  20. Shabalin AV. Composition for fermented milk product preparation. Russia patent RU 2614113C1. 2016.
  21. Potoroko IYu, Botvinnikova VV, Feklicheva IV. Impact of plant components on activity of symbiotic fermentation of kefir grains and formation of fermented milk drinks quality. Bulletin of South Ural State University. Series: Food and Biotechnology. 2014;2(1):34–41. (In Russ.).
  22. Skorkina IA, Tretyakova EN, Sukhareva TN. The technology of biokefir production with natural additives functionality. Technologies of food and processing industry of AIC – healthy food. 2015;5(1):79–83. (In Russ.).
  23. Minty purple sweet potato fermented yogurt with effects of clearing heat and inducing diuresis and preparation method thereof. Patent 105994636CN. 2016.
  24. Joung JY, Lee JY, Ha YS, Shin YK, Kim Y, Kim SH, et al. Enhanced microbial, functional and sensory properties of herbal yogurt fermented with Korean traditional plant extracts. Korean Journal for Food Science of Animal Resources. 2016;36(1):90–99. DOI: https://doi.org/10.5851/kosfa.2016.36.1.90.
  25. Caldas-Cueva JP, Morales P, Ludena F, Betalleluz-Pallardel I, Chirinos R, Noratto G, et al. Stability of betacyanin pigments and antioxidants in ayrampo (Opuntia soehrensii britton and rose) seed extracts and as a yogurt natural colorant. Journal of Food Processing and Preservation. 2016;40(3):541–549. DOI: https://doi.org/10.1111/jfpp.12633.
  26. Oh NS, Lee JY, Joung JY, Kim KS, Shin YK, Lee K.-W, et al. Microbiological characterization and functionality of set-type yogurt fermented with potential prebiotic substrates Cudrania tricuspidata and Morus alba L. leaf extracts. Journal of Dairy Science. 2016;99(8):6014–6025. DOI: https://doi.org/10.3168/jds.2015-10814.
  27. Chiodelli G, Pellizzoni M, Ruzickova G, Lucini L. Effect of Different Aloe Fractions on the Growth of Lactic Acid Bacteria. Journal of Food Science. 2017;82(1):219–224. DOI: https://doi.org/10.1111/1750-3841.13568.
  28. Pothuraju R, Sharma RK, Chagalamarri J, Kavadi PK, Jangra S. Influence of milk fermented with Lactobacillus rhamnosus NCDC 17 alone and in combination with herbal ingredients on diet induced adiposity and related gene expression in C57BL/6J mice. Food and Function. 2015;6(11):3576–3584. DOI: https://doi.org/10.1039/c5fo00781j.
  29. Jäger AK, Saaby L, Kudsk DS, Witt KC, Molgaard P. Short communication: Influence of pasteurization on the active compounds in medicinal plants to be used in dairy products. Journal of Dairy Science. 2010;93(6):2351–2353. DOI: https://doi.org/10.3168/jds.2009-2910.
  30. Kurnakova OL. Razrabotka i otsenka potrebitelʹskikh svoystv obogashchennykh yogurtov s ispolʹzovaniem rastitelʹnykh ingredientov [Development and evaluation of consumer properties of yoghurts enriched with plant ingredients]. Cand. eng. sci. diss. Orel: State University – the Centre for Educational, Research and Production; 2015. 226 p.
  31. Mocanu G-D, Rotaru G, Botez E, Gîtin L, Andronoiu D-G, Nistor O, et al. Sensory evaluation and rheological behavior of probiotic dairy products with Rosa Canina L. and Glycyrriza Glabra L. extracts. Innovative Romanian Food Biotechnology. 2009;4:32–39.
  32. Mocanu G-D, Rotaru G, Botez E, Vasile A, Gîtin L, Andronoiu D, et al. Research concerning the production of a probiotic dairy product with added medicinal plant extracts. The Annals of the University Dunarea de Jos of Galati. Fascicle VI. Food Technology. 2009;3(32):37–44.
  33. Kozlowska M, Scibisz I, Zareba D, Ziarno M. Antioxidant properties and effect on lactic acid bacterial growth of spice extracts. CYTA – Journal of Food. 2015;13(4):573–577. DOI: https://doi.org/10.1080/19476337.2015.1022228.
  34. Perinskaya YuS, Sakanyan EI. Current State and Prospects of Developing Drugs Based on Rhizomes and Roots of Rhodiola rosea L. Pharmaceutical Chemistry Journal. 2014;48(8):28–32. (In Russ.).
  35. Ahlawat S, Saxena P, Alam P, Wajid S, Abdin MZ. Modulation of artemisinin biosynthesis by elicitors, inhibitor, and precur-sor in hairy root cultures of Artemisia annua L. Journal of Plant Interactions. 2014;9(1):811–824. DOI: https://doi.org/10.1080/17429145.2014.949885.
  36. Olennikov DN, Kashchenko NI. Phaponticum uniflorum: chemical components and biological activity. Chemistry of plant raw material. 2018;(2):5–20. DOI: https://doi.org/10.14258/jcprm.2018023449.
  37. Prosekov AYu, Ivanova SA. Food security: The challenge of the present. Geoforum. 2018;91:73–77. DOI: https://doi.org/10.1016/j.geoforum.2018.02.030.
  38. Kuluev BR, Knyazev AV, Mikhaylova EV, Ermoshin AA, Nikonorov YM, Chemeris, AV. The poplar ARGOS-LIKE gene promotes leaf initiation and cell expansion, and controls organ size. Biologia Plantarum. 2016;60(3):513–522. DOI: https://doi.org/10.1007/s10535-016-0610-x.
  39. Bykov VA. Rastitelʹnoe bioraznoobrazie i zdorovʹe cheloveka [Plant biodiversity and human health]. Vestnik Rossijskoj akademii nauk. 2016;86(6):553–556. (In Russ.).
  40. Prosekov AYu, Dyshlyuk LS, Milent’eva IS, Pavsky VA, Ivanova SA, Garmashov SY. Study of the biofunctional properties of cedar pine oil with the use of in vitro testing cultures. Foods and Raw Materials. 2018;6(1):136–143. DOI: https://doi.org/10.21603/2308-4057-2018-1-136-143.
How to quote?
Sukhikh SA, Astakhova LA, Golubcova YuV, Lukin AA, Prosekova EA, Milent`eva IS, et al.. Functional dairy products enriched with plant ingredients. Foods and Raw Materials. 2019;7(2):428–438. DOI: http://doi.org/10.21603/2308-4057-2019-2-428-438
About journal

Download
Contents
Abstract
Keywords
References